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Abstract—Given the recent increase in frequency, sophistication
and success of cyber-attacks against critical IT infrastructure,
such as the Smart Grid, the urgent need for advanced cyber-
security solutions is clearly evident. This paper presents a
security information analytics (SIA) framework, using various
data analytics methods to detect anomalies in metered data, that
may indicate attacks. The implementation of the SIA tool has
been applied to a live micro-grid test-bed for the modeling of
normal behaviour and for performance analysis. Furthermore,
the framework is scalable, allowing additional analysis tools and
resilient control solutions to be incorporated, further enhancing
the reliability of the system.

Keywords–Cyber-physical systems; Intrusion detection; Cyber-
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I. INTRODUCTION

Critical infrastructures have, traditionally, been operated as
stand-alone systems, with dedicated communication networks,
thus protecting them from the outside world. However, ad-
vances in Cyber-Physical Systems (CPS), like the smart grid,
expose new vulnerabilities, which can be exploited by cyber-
criminals intent on carrying out malicious attacks [1], [2].
Recent cyber-attacks on energy utilities demonstrate that cyber-
criminals are increasingly targeting critical infrastructures and
learning how interact with and use such systems.

For example, on December 23, 2015, hackers deployed
malware into the systems of multiple regional power dis-
tribution companies in Ukraine, causing an outage that left
around 700,000 customers without electricity. The attackers
used BlackEnergy along with a destructive component called
KillDisk to disrupt machines, thus increasing the time required
to restore normal operational mode and remove evidence of an
attack [3]. Whilst the first version of BlackEnergy was only a
common trojan, able to execute different DDoS attacks[4], it
was later reconfigured and extended by incorporating modules
to target industrial control systems (ICS). The Sandworm
Team, to whom the Ukrainian attack has been attributed [5],
are known to have carried out previous attacks, which were
reported to not only involve classic strategic espionage, but
also to target SCADA systems [6], leveraging a supplementary
module in BlackEnergy that scans an IP block for open ports
used by SCADA control systems. Furthermore, recently sur-
faced malware, such as Havex, exhibits the capability to target
control systems. Havex was originally used between 2011
and 2013 during the ‘DragonFly’ campaign [7] that targeted
energy, gas and oil companies, in which one of the infection
vectors used was the water hole technique – compromising
SCADA software companies’ websites by repacking malware
with the legitimate software.

An important feature of the malware described above is its
ability to capture screenshots and record operators’ activities
in the compromised machines, thus, remedying the attackers’
lack of expert knowledge about the ICS. With knowledge of
the system model, an attacker may successfully achieve an
attack which will not be detectable to a system operator [8].

The evolution of attackers, attack methods and exploitable
vulnerabilities clearly results in changing risks confronting
smart grid security. The success of the attacks, detailed above,
indicates that the security tools and applications, currently in
use, are failing to protect critical infrastructures from advanced
attackers. New tools and methodologies for both detecting and
reacting to attacks are, thus, needed to fill the gap and limit
the current threat landscape.

Much of the existing work on CPS security relies on the
assumption that perfect knowledge of the physical system is
available to the designer of the control and estimation system
[2] or that the dynamics of the system can be modelled
as discrete-time state transitions, using techniques such as
Kalman filtering [9]. However, these methods are not always
practical or accurate for complex systems with interdependen-
cies between components, and can result in the use of over-
simplified models which do not characterise the complexities
and dynamics of the system well [9]. Furthermore, when the
control system is based on a simplified system model, an
attacker who can acquire sufficient knowledge of the system
model may be able to generate an attack that will go undetected
[8].

The smart grid already collects a vast amount of informa-
tion that can be used to develop new security analytics tools to
quickly and accurately detect cyber-attacks. These data allow
the behaviour of the grid, under normal operating conditions,
to be modelled. The detection of anomalies or deviations
from normal behaviour, which may indicate attacks, is an
important precursor to building resilient control systems, the
final aim of which is to create critical infrastructures that repair
or reconfigure themselves, in response to an attack. Apart
from being able to spot obvious policy violations by applying
a priori rules that compare measured data to thresholds or
look for correlations across events, one possible feature in
a consolidated security analytics tools could be assimilating
diverse data sources to identify possible cyber-attacks that are
invisible from the perspective of any one of these actions, but
could be revealed by jointly considering several independent
actions.

In this work, a framework for enhanced smart grid security
is proposed, which enables anomaly detection by means of
the joint implementation of various data analytics algorithms,
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including methods driven by expert system knowledge and
statistical analysis, as well as data-driven techniques from
machine learning. The algorithms process the available data,
intelligently exploiting the inherent redundancies in the system.
The framework, called a Security Information Analytics (SIA)
tool, is designed to be flexible, in order to allow other methods
and algorithms to be incorporated over time.

The remainder of this paper describes the approach fol-
lowed to develop the SIA tool for the smart grid. The threats
faced in smart grid security, along with requirements and
constraints for security analytics, are highlighted in Section II.
This is followed by an introduction to the Nimbus testbed,
which was used to develop and validate the SIA tool, in Sec-
tion III. The paper continues with a description of the internal
architecture of the SIA tool in Section IV. The preliminary
results are outlined in Section V and some conclusions are
discussed in Section VI.

II. SMART GRID SECURITY

A. Smart Grid Threats
The NESCOR failure scenarios [10] are an extremely

valuable resource for anyone trying to understand and mit-
igate potential cyber physical attacks against a smart grid
environment. Scenarios are organized in terms of impact and
each scenario addresses attacker profile, attack method and
exploited vulnerability, as they are relevant to that particular
scenario. The scenarios are organized into six domains:

1) Automated Meter Infrastructure (AMI)
2) Distributed Energy Resources (DER)
3) Wide Area Monitoring, Protection, and Control

(WAMPAC)
4) Electric Transportation (ET)
5) Demand Response (DR)
6) Distribution Grid Management (DGM)

In this work, the focus is on the security of the meters,
due to their importance in the smart grid infrastructure, con-
sidering, primarily, the NESCOR scenarios that are related to
meter forgery and mass-disconnection attacks:

• AMI.1 Authorized Employee Issues Unauthorized
Mass Remote Disconnect: an employee within the
utility, having valid authorization, issues a “remote
disconnect” command to a large number of meters.

• AMI.9 Invalid Disconnect Messages to Meters Impact
Customers and Utility: a threat agent obtains legit-
imate credentials to the AMI system and issues a
disconnect command for one or more target meters
or schedules a disconnection to occur automatically at
a later time.

• AMI.10 Unauthorized Pricing Information Impacts
Utility Revenue: a threat agent sends out unauthorized
pricing information, such as Time-of-Use (TOU) pric-
ing. This may result in either a loss or increase in
utility revenue until the invalid price is recognized.
Such an attack leaves the electricity supplier open to
legal challenges from its subscribers.

• AMI.14 Breach of Cellular Provider’s Network Ex-
poses AMI Access: inadequate security implementa-
tion in the AMI monitoring and control backup system
allows a threat agent to execute an attack on the

AMI implementation during a business continuity or
disaster recovery scenario. Access to these backup
systems allows a threat agent to perform malicious
activity.

• AMI.32 Power Stolen by Reconfiguring Meter via
Optical Port: Many smart meters provide the capability
of re-calibrating the settings via an optical port, which
can be misused by economic thieves, who offer to
alter the meters for a fee, changing the settings for
recording power consumption and often cutting utility
bills by 50-75%. This requires collusion between a
knowledgeable criminal and an electricity customer,
and will become widespread because of the ease of
intrusion and the economic benefit to both parties.

B. Requirements and Constraints
In order to detect attacks, such as those outlined above,

as well as unforeseen attacks, including those in which the
attacker has gained knowledge of the ICS, the SIA tool aims to
incorporate various different methods and algorithms, in order
to provide a reliable and robust security solution for the smart
grid. The primary requirements for such a system include the
following:

• Minimise the probability of an undetected attack.
• Minimise the delay between the start of an attack and

its detection.
• Minimise the probability of false alarm.

The first two requirements aim to reduce the impact of attacks
by ensuring that interventions can take place immediately,
minimising any financial losses, damage to physical com-
ponents or danger to human life. Arguably as important as
the first two requirements, minimisation of the false alarm
probability avoids costly unnecessary interventions and, also,
ensures that alerts are not ignored by operators. Secondary
requirements include intuitive interfaces for visualisation and
querying of data, integration into existing work flows, and
allowing both real-time response and long-term investigations
to be easily executed. However, these secondary requirements
are considered to be outside of the scope of this paper.

There are many constraints that must be overcome in order
to implement robust and reliable security analytics tools that
will meet the afore-mentioned requirements. The dataset gen-
erated in the smart grid is very large and disparate, requiring
massively parallel processing for a real time implementation.
As such, any algorithms that are used, must be suitable for
distributed processing and computational efficiency is an im-
portant consideration. The measurement precision of meters is
limited and varies between devices, this can limit the potential
for anomaly detection. Furthermore, when jointly considering
the measurements from multiple meters throughout the system
between the readings from different meters, synchronization,
or the lack thereof, is a factor that must be carefully considered,
in particular, for time-varying systems.

III. INTRODUCTION TO NIMBUS TESTBED

The Nimbus Microgrid is a low-energy test bed commis-
sioned by United Technologies Research Center (UTRC) in
Cork, Ireland [11]. Along with an electrical microgrid, the test
bed incorporates the thermal heating system of the Nimbus
and Rubicon buildings of the Cork Institute of Technology,
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to create a live-in laboratory for demonstrating building and
climate controls.

A. Description
The Nimbus micro-grid (Figure 1) consists of the following

components:

• A wind turbine
• A Li-Ion battery
• A combined heat and power unit
• A feeder management relay to couple the microgrid

to the building grid
• A set of local loads

Figure 1. A simplified diagram of the Nimbus Test Bed

The microgrid and the connected thermal system are ex-
tensively monitored using a network of electrical meters and
other sensors. These measurements, together with relevant
information about gas and electricity power consumption mea-
surements and prices, as well as thermal and electrical loads
and weather and wind forecasts, are continuously available
from the system and are collected into the data historian. The
flow of information is outlined below.

B. Data Flow
1) Measurement: The primary points of data collection

are the eight 3-phase electrical meters, each of which
measures twenty-eight variables:

• three phase-neutral and three phase-phase volt-
ages,

• four line currents (three phases and neutral),
• total active (±), reactive (±), and apparent energy,
• active, reactive and apparent power per phase,
• total active and apparent power, and power factor,
• frequency.

The meter measurements make up the bulk of the col-
lected data, accounting for a total of 224 variables.
Furthermore, the battery, the combined heat and power
unit, the wind turbine, the thermal storage tanks, and their
associated inverters, all record the variables pertinent to
each unit. These units also contain internal checks that
generate alarms and warnings, which are communicated
to the system.

2) Collection: The data variables listed above are com-
municated by the meters and system components to a
programmable logic controller (PLC), which also logs
other data from the system, such as the position indicators
of all control valves and the status of breakers. It also acts
as the conduit for the commands sent to the system, such
as changes to the system mode and set points, commands
to the breakers, as well as manual overrides. In total, 1252
variables are logged every second.

3) Display & Logging: The PLC communicates the data
to the SCADA PC, which runs the human-machine-
interface (HMI) tool shown in Figure 1, which displays
the monitoring variables. The HMI also serves to display
and acknowledge system alarms and warnings. The PC
stores the variables into a database on the hard drive.

4) Test Bed Middleware: The Test Bed middleware is
hosted on a PC on the same network as the SCADA PC.
The middleware PC uses open platform communications
(OPC) to periodically request the current variable values
from the SCADA interface, which it parses and stores in
another database on its hard drive. The middleware also
acts the interface for any client (e.g., Matlab) to access
the data using Simple Object Access Protocol.

IV. SIA APPLICATION

The SIA application is an interactive smart grid security
analytics tool, implemented in R for the detection of anomalies
in the Nimbus micro-grid. In this section, the architecture,
algorithms used, and implementation of the tool are described
in some detail.

A. SIA Architecture
The SIA application is composed of three main compo-

nents: the security analytics engine, which tidies the SCADA
data, runs the outlier algorithms, and makes a list of identified
outliers; the web application, that visualizes the data and helps
analysts to understand the security status of the grid; and a web
API, an interface which can be used to feed security analytics
intelligence into resilient control and remediation systems, to
react to the threat or investigate the attack. This paper focuses
on the security analytics engine.

B. Anomaly Detection Algorithms
There are five different methods of anomaly detection

incorporated in the current implementation of the SIA tool
and further methods will be added in ongoing work. The key
idea behind the approach is to exploit redundancies, both in
the data itself and in the outputs from the various methods, in
order to improve the reliability of the anomaly detection.

The five currently implemented methods can be broadly
categorized as knowledge-based or data-driven. The
knowledge-based methods rely on expert knowledge of
the micro-grid and its specific meters, or of the type of attack
that might be carried out. For example, the voltage at any
given meter is limited by the specifications of the equipment
and the preconfigured value set by the test-bed operators.
Similarly, a specific attack mode might cause multiple sensors
to power off almost simultaneously; explicitly considering this
type of attack can help it to be differentiated from a power
fault. The data-driven category describes methods, such as
machine learning, which rely on the data itself to learn the
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normal behaviour of the system, with no explicit assumptions
made about the source of the data or the relationships between
variables.

The SIA application is comprised of the five anomaly
detectors described below. The single-variable outlier detector,
rule-based outlier detector and dead sensor clustering algo-
rithm are considered to be knowledge-based, whilst the smart
detector and Kullback-Leibler distance are considered to be
data-driven.

1) Single-variable outlier detector: This outlier detector is
the simplest implemented in the analytic engine. The detector
identifies if the value of a measured variable falls outside of a
predefined range for that variable. The threshold can be defined
by known specification limits on equipment or operational
thresholds. In this case, the thresholds were defined by the
specifications of the meters used in the NIMBUS test-bed.

2) Rule-based outlier detector: The rule-based detector
exploits redundancies in the measured variables to find anoma-
lies. Each meter measures multiple closely related variables,
some of which are not physically independent. As an example,
consider the six different voltages measured by an electrical
meter: the magnitudes of three phase-to-neutral voltages and
three phase-to-phase voltages. Since only five independent
variables exist in the voltage system (three magnitudes and
two relative phases), it is evident that there is one exploitable
redundancy: each voltage vector needs to form a triangle with
two others to create a closed system, as shown in Figure 2.

A

B

C

VA

VB

VC

VAB

VBC

VCA

φAB

φCA

φBC

Figure 2. 3-Phase Voltage Phasors

Obtaining an equation from a redundancy requires expert
knowledge. As an example, for Figure 2, Equation 1 sums the
phases of the voltages:

1

2π

[
cos−1 V

2
A + V 2

B − V 2
AB

2VAVB

+ cos−1 V
2
B + V 2

C − V 2
BC

2VBVC

+ cos−1 V
2
C + V 2

A − V 2
CA

2VCVA

]
= 1. (1)

To account for measurement noise in the meter and other
factors, such as sampling resolution and synchronization, his-
torical data can be used to find the statistical distribution of
the left hand side (LHS) of the equation. At any time, then, the
value of the LHS for the current measurement can be compared
to the historical distribution to calculate the probability of

measuring that value. One or several thresholds can then be
set on the probability that indicate the degree to which each
redundancy check is violated.

In order to reduce false-positives, the number of violated
equations is used as an outlier score. Namely, out of a total of
twenty-one rules per meter, if less than three rules are violated,
this is likely a false positive and can be safely ignored, however
if more than six rules are violated the event is labelled as
severe.

In order to remain portable, the system makes no as-
sumptions about the variable output protocol or format. The
equations are formatted using generic names for each variable.
The rules are adapted to match the data format in use with a
parsing routine. These rules can, then, be used directly with
the input dataset.

3) Dead sensor clustering algorithm: This detector is
designed to alert operators to the mass disconnection sce-
narios (AMI.1, AMI.9, AMI.14) discussed in Section II-A.
This algorithm groups disconnected sensors using the time
between disconnection. Multiple sensors in the same subnet
work dropping within a few hours of each other likely points
to an isolated hardware failure and poses a lower risk than
a malicious attack. A much more severe event is a mass
disconnection scenario where multiple related sensors receive
a command to shut down within a few minutes of each other.

The dead sensor clustering procedure, illustrated in Fig-
ure 3, groups sensors into a cluster if they have disconnected
within a time window which can be defined by the user.
The time window is reset each time a sensor is disconnected
and the cluster grows until no more sensors are disconnected
within the time window. The cluster is defined as anomalous
if the number of sensors associated with it is above a user-
configurable threshold that should be defined in relation to the
system size. This detector could be used to override a mass
disconnection command and stop the attack at an early stage.

Time

Se
ns

or
s

Anomalous Cluster

Benign Cluster

Figure 3. Diagram of the dead sensor clustering algorithm, showing the
process by which disconnecting sensors are clustered together using a

sliding time window. An orange node denotes a disconnected sensor, blue
nodes denote connected sensors and grey nodes denote sensors that may be
connected or disconnected. The time periods indicated in green represent the
window. Here, a cluster with three or more sensors is considered anomalous.

4) Kullback-Leibler Distance: The Kullback-Leibler (KL)
distance measures the difference between two distributions. In
this case the symmetrized KL distance is used to determine
by how much the daily measurements made by the sensors
differ from a predefined baseline. Outliers are defined by those
measurements which have a KL distance larger than a user-
configurable value. In this work, the KL distance is calculated
for each of the calculated rules, relating the redundant vari-
ables.
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This detection algorithm serves to validate the results of
the equations for an entire day against the baseline, and so it
can not be used when running in real-time.

5) Smart Anomaly Detector: The so-called smart detector
is a machine-learning (ML) algorithm that learns the normal
behaviour of the system from the meter measurements to
create a model. New measurements are, then, compared to
the model and any instances which do not fit are classified as
anomalous. In contrast to the rule-based anomaly detector, the
smart detector produces a binary decision rather than a score.

ML algorithms are typically classified into supervised or
unsupervised methods, depending on whether they require
labelled data or not, respectively. Supervised methods typically
work on data samples from two or more labelled classes, for
example, normal and anomalous. The challenge with smart
grids, and other anomaly detection exercises, is the lack of
labelled anomalous data. In particular, it is very difficult to
acquire known attack/fault data from smart grid installations
and, even if such labelled anomalies were available, the case
of new, unforeseen attacks or anomalies is not considered. One
alternative is to assume that all data available represents normal
behaviour, and to modify the supervised learning algorithm to
work with a single class. Such algorithms are known as one-
class ML, novelty detection, or anomaly detection algorithms
in the literature. The algorithms learn the normal behaviour of
the system, and then label any new data as anomalous if it
does not fit with the model.

There are multiple anomaly detection ML algorithms in
the literature, including variants of support vector machines
(SVM), 1-Nearest Neighbour methods, parzen density esti-
mation, and modified neural networks. In this work, a one-
class support vector machine was used [12], [13], using the
libsvm implementation [14]. Due to the diversity of electrical
appliance behaviour, an individual model was trained for each
meter in question. Some of the meters are connected to single-
phase appliances while others to tri-phase industrial devices.
As a result, some models include all variables used in the static
rule-based detector, whilst others include a subset.

C. Combination of Anomaly Detector Outputs
The output from rule-based and smart anomaly detectors

can be combined to reduce false-positives, by considering the
overlapping subset of anomalous samples, detected by more
than one detector. The single-variable detector is not included
in the combination as it already provides an easily managable
number of anomalies. In addition, this detector only examines a
limited number of measurements, meaning the detection scope
is much more restricted than the other detectors. This makes
a combination with the single-variable detector inappropriate.

The combination is done by comparing the timestamps
flagged as outliers by the smart anomaly detector and the rule-
based detector. To get more information about which kinds of
outliers are being detected by the smart detector, the overlap
is examined as a function of the severity of the anomaly as
defined in Section IV-B2.

V. RESULTS

The results of the various outlier detection algorithms are
visualized in the web application portion of SIA. However,
here we present the results of the rule-based and smart anomaly

detectors only as they highlight some of the constraints and
challenges in developing an effective smart grid analytics
system.

A day worth of data collected at the Nimbus testbed using
a stable time resolution of 15 seconds is used here. Note that
this resolution is described as stable as this granularity does
vary within the time range. The varying time resolution must
be considered when comparing results of different algorithms
and examining the severity of an outlier.

The Nimbus micro-grid is composed of 8 smart meters; in
Figure 4 a typical output from the outlier detectors is shown
for a single meter. Note that only the single variable and rule-
based detectors are included here. To address AMI.32, high-
risk rules are defined and highlighted to the operator. These are
a subset of rules which contain electrical currents. The current
has been chosen as a potential at-risk variable for manipulation
by agents wanting to reduce the cost of electricity.

The total number of anomalies flagged by the rule-based
detector in a single day is 20840 over all 8 meters. This volume
of outliers is clearly too high for effective remediation. This
highlights the need to either improve the detection algorithms
to improve their performance, or combine these results with
complementary methods to reduce the false positives.

The former requires a deep and specialized understanding
of the system to more accurately model meter behaviour. This
approach is both time consuming, and reduced the ability of
the system to be utilized in a different environment.

Figure 4. Number of outliers flagged as a function of time. Shown are the
results from the rule-based and single variable detectors for a single sensors
over a period of one day. The dotted distributions correspond to the number

of outliers detected by the rule-based detector. The green distribution
corresponds to all rules, while the red corresponds to so-called high-risk

rules only. Anomalies detected by the single variable detector are marked by
crosses.

Here, a combination of the rule-based detector and the
smart anomaly detector results as described in Section IV-C
is presented.

Examination of a days worth of data shows that a combina-
tion reduces the outliers by 70% compared to the rule-based
detector alone. In addition, the combination filters out 80%
of the low severity outliers while keeping over 93% of high
severity outliers (Table I).
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TABLE I. OVERLAP OF SMART AND RULE-BASED DECTORS BY
SEVERITY

Severity Overlap (%)

Low 17.7
Medium 56.2
High 93.7

VI. CONCLUSION AND FUTURE WORK

The ever evolving security landscape presents a very real
threat to critical infrastructure such as the smart grid. New
technologies and modes of operation are required to protect
the smart grid from increasingly sophisticated attacks. Ex-
ploiting data analytics is key in this effort. An overview of
the design constraints for a security data analytics framework
were presented along with a concrete implementation. The SIA
application consists of an analytics engine designed to detect
different attack and failure scenarios, and a web application
interface to facilitate operations. Five anomaly detection algo-
rithms were presented. These reflect both current approaches,
relying on pre-existing knowledge and assumptions, and new
approaches, that depend on data to create models with minimal
domain-specific knowledge. Measurements from the micro-
grid are affected by multiple effects, which as a whole, limit
the performance of the rule-based approach. In order to reduce
false positives, a combination with an ML-based detector was
carried out with some success. Remedying the limitations of
the rule-based approach would require a greater understanding
of the specific measurement components, and lead to an
overspecification of algorithm. This would require significant
work and reduce the applicability of such a model to other
systems. Smart detectors which learn the behaviour of the
system from the data can detect anomalies making minimal
assumptions about the kinds of attack patterns, making the
system more secure against future threats.
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