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Abstract

In this paper, variants of the Ramsey Number problem are investigated. In particular, chromatic
graphs not containing almost monochromatic triangles for color spectrum and color wheel, finite
metric spaces not containing almost equilateral triangles and the relations between these different
problems and the original Ramsey problem are studied.

1 Introduction

By way of generalizing the original Ramsey prob-
lem, we can use the intuitive concept of nearness
of colors in a color wheel or a color spectrum. An
explicit definition of this concept may be given as
follows:

Definition 1. Neighboring Colors
Given a set of n colors in specific order,

{k1, k2, . . . , ki, . . . , kj , . . . , kn}, two colors ki and
kj, (i < j) are said to be neighboring colors if
j − i = 1. Additionally,

1. In a color spectrum, kn and k1 are not defined
to be neighboring.

2. In a color wheel, kn and k1 are defined to be
neighboring.

Definition 2. Almost Monochromatic Triangles
An almost monochromatic triangle is defined as

a triangle in which all the colors of the sides are the
same or neighbors of each other.

The Ramsey problem can thus be generalized:
Determine the minimum number of points, so that
when all points are connected to each other and the
edges colored using n colors, the graph contains at
least one almost monochromatic triangle, in the two
cases of a color spectrum and a color wheel.

Definition 3. An

An denotes the minimum number of points, so
that when all points are connected to each other and
the edges colored using n colors forming a color
spectrum, the graph contains at least one almost
monochromatic triangle.

Definition 4. Bn

Bn denotes the minimum number of points, so
that when all points are connected to each other
and the edges colored using n colors forming a
color wheel, the graph contains at least one almost
monochromatic triangle.

In the following sections, further properties of
An and Bn and ways of determining them as de-
fined above for different values of n will be pro-
posed.

2 Almost Monochromatic Tri-
angles in a Color Spectrum

Theorem 5.

An ≤ 2An−2 + 2An−3

+
n−2∑

i=3

R2[Ai−2, An−i−1; 2] − n + 2,

A1 = 3, A2 = 3, A3 = 6.

Proof. The result can be proved by anticipating the
Pigeonhole Principle. Consider a list of n colors k1,
k2,. . . ,kn. Fix a single point P of the graph. The
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maximum number of points that can be connected
to P using color k1 is given by An−2−1 each, as n−2
colors k3, k4,. . . , kn remain which are not neighbors
of k1. If two points joined to P by k1 were joined
to each other by a neighboring color, we would get
an almost monochromatic triangle. It is also the
number of points for kn. Similarly, for the second
and second to last colors, it is An−3 − 1 each. If we
select the ith color ki (3 ≤ i ≤ n − 2), we get two
sets of i − 2 (k1, k2,. . . , ki−2) and n − i − 1 (ki+2,
ki+3,. . . , kn) colors which are not neighbors of ki.
The points joined to P cannot form a Ai−2− clique
in i−2 colors, nor can they form a An−i−1 − clique
in n−i−1 colors. For, indeed, if there did, we could
have a subgraph of Ai−2 points in i− 2 colors, or a
subgraph of An−i−1 points in n − i − 1 colors, ar-
ranged in a color spectrum, which would guarantee
an almost monochromatic triangle. So the maxi-
mum number of points joined to P by color ki is
R2[Ai−2, An−i−1; 2]− 1. This is true for all colors
ki such that 3 ≤ i ≤ n − 2. Therefore, the max-
imum number of edges which can join P to other
points is

2(An−2 − 1) + 2(An−3 − 1)

+
n−2∑

i=3

(R2[Ai−2, An−i−1; 2] − 1).

Adding one more point would guarantee an almost
monochromatic triangle. Therefore, including P in
the count we get our desired result.

It is obvious that A1 = 3, A2 = 3. For A3, con-
sider a graph of 5 points joined to P . If we have
two edges each of k1 and k3 and one edge of k2 con-
nected to P . As similar logic applies to k1 and k3,
without loss of generality, consider the points con-
nected to P by k1 as A and B, and that connected
by k2 as C. Now A and B can only be connected
to each other by k3. This is also the case with A
and C as well as B and C. Thus A, B and C form
a monochromatic triangle. So, a graph of 6 points
in three colors always gives an almost monochro-
matic triangle. Also, it is possible to construct a
5-point graph containing only the first and third
colors, which are not neighbors, as this is equiva-
lent to the case of the Ramsey Number Rn[3, 3; 2].
So A3 = 6.

The values of upper bounds calculated from the
result of Theorem 5 (for n > 8, the upper bounds
of the necessary Ramsey Numbers are as yet un-

known):

A4 ≤ 10
A5 ≤ 21
A6 ≤ 40
A7 ≤ 99
A8 ≤ 238.

3 Almost Monochromatic Tri-
angles in a Color Wheel

The following relation between Bn and An can be
proved:

Theorem 6.

Bn ≤ n(An−3 − 1) + 2, B1 = 3, B2 = 3, B3 = 5.
(1)

Proof. Consider a graph of N = n(An−3 − 1) + 2
points. Suppose it does not contain an almost
monochromatic triangle. Consider all edges con-
necting one point P to others. There are N − 1
edges, in n colors. Applying the Pigeonhole Princi-
ple, we get that at least one color, say k1, connects
P to An−3 points. Now, the edges interconnect-
ing these An−3 points cannot be neighbors of kn.
That leaves n − 3 colors, excluding kn, k1 and k2.
But these n − 3 colors form a color spectrum, and
An−3 points in n − 3 colors forming a color spec-
trum guarantee an almost monochromatic triangle.
This is a contradiction.

Thus, N = n(An−3 − 1) + 2 points in n colors
of a color wheel contains an almost monochromatic
triangle.

Again, it is obvious that B1 = 3, B2 = 3.
For three colors, consider a tetrahedron. There

are three sets of two skew edges. If we color each
pair by a different color, and both edges in a pair
by that same color, we get a complete graph of
four vertices in three colors, without any almost
monochromatic triangle. So, B3 > 4. Now, in a set
of three colors, all are neighbors of each other. So,
if a triangle has two sides of the same color, it must
be almost monochromatic. Now, from a point, at
most three sides can originate which are of different
colors. If a fourth side exists, two have the same
color. So the number of points cannot exceed 4.
The fourth edge (fifth point) guarantees an almost
monochromatic triangle. So, B3 = 5.

To prove some lower bounds on different Bn, a
method based on the one used in [2] can been used.

Let Up = Zp − 0 be the multiplicative subgroup
of units in Zp.
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Lemma 7. The set of residues, H, of nth powers
in Zp is a subgroup of Up.

Proof. Consider a, b ∈ Up. an, bn ∈ H . Also,
an · bn = (ab)n ∈ H . a−1 = 1

a ∈ Up. (an)−1 =
1

an = ( 1
a )n ∈ H . Thus H is a subgroup of Up.

Theorem 8. Let p be a prime and let H ⊂ Up

be the set of nth power residues of Zp such that
−1 ∈ H. Suppose that n|(p − 1) and there exists
generator g of Up such that the following condition
never holds:

∃ A ∈ H such that A − 1 ∈ H, gH or gn−1H,

then Bn ≥ p + 1.

Before proving Theorem 8, it is necessary to
prove the following lemmas.

Lemma 9. {H, gH, . . . , gn−1H} are cosets of H.

Proof. Suppose

gkH = glH

⇒ gl−kH = H

⇒ n|l − k.

gl−k is a residue. Clearly all possible residues are

{gn, g2n, . . . , g( p−1
n )n}.

The maximum difference is n−1, so that if n|(l−k),
l = k. So all the sets are distinct. As there can only
be n cosets, these represent all of them.

Definition 10. Residue Classes
H and its cosets gH, g2H,. . . , gn−1H are de-

fined as residue classes.

We now return to the proof of Theorem 8.

Proof. Suppose ∃ p, g as in the statement of the
proof. Construct a complete graph of p vertices
each labeled 0 through p − 1. For any given edge
connecting two vertices i and j, color it with the
color corresponding to residue class of i − j, i.e.,
if i − j ∈ glH , it is assigned color kl+1. As all
the glH are cosets (by Lemma 9), the color for
each edge is uniquely defined. As −1 ∈ H , i − j
and j − i belong to the same residue class. Sup-
pose that the graph generated above using residue
classes contains an almost monochromatic triangle
DEF (D, E and F denote both the points as well
as the vertex numbers), with edges DE and DF of
the same color. Replace every vertex i in the graph
by i−D. Clearly the colors remain same. Now mul-
tiply all vertices by 1

F−D . Let 1
F−D ∈ gkH . Then

for x ∈ glH , x
F−D ∈ gk+lH . In other words, col-

ors have been cyclically permuted so that the
notion of neighboring colors is preserved. Let
E−D
F−D = A. So the triangle has vertices 0, 1 and A,
with the edges joining 0 to 1 and 0 to A of the same
color. So A ∈ H and (A − 1) ∈ H, gH or gn−1H .
This contradicts the assumptions in the statement
of the theorem. This shows that the graph colored
using the above algorithm does not have an almost
monochromatic triangle. So Bn ≥ p + 1.

Remark 11. It is quite evident that Bn−1 ≤ Bn,
since if Bn points guarantee an almost monochro-
matic triangle in n − 1 colors, they will also guar-
antee one in n colors. Also, An−1 ≤ An.

It is non-trivial to calculate the nth power
residue sets by hand, especially for large n. How-
ever, a small computer program can calculate these
residue sets easily. Here, a C++ program was writ-
ten, which takes into account all the conditions in
the above theorems and gives out the lower and up-
per bounds directly, along with g and the residue
sets. As no upper bounds can be calculated for
n > 11 anyway, this has been currently run for only
n = 1 to n = 30. Further computation is hoped to
be undertaken shortly. The results are tabulated in
Appendix A.

4 Some Results

We prove the following results in further theorems:

B1 = 3
B2 = 3
B3 = 5
B4 ≤ 10
B5 = 12
B6 ≤ 32

30 ≤B7 ≤ 65
30 ≤B8 ≤ 162
74 ≤B9 ≤ 353

B10 ≤ 982
90 ≤B11 ≤ 2609.

(2)

Putting n = 4, 5, 6, 7, 8, 9, 10 and 11 in (1), we
get the upper bounds.

Theorem 12. B5 ≥ 12, B7 ≥ 30, B9 ≥ 74,
B11 ≥ 90, 30 ≤ B8 ≤ 162.

Proof. Using the method mentioned above, taking
n = 5, g = 4 and p = 11, we get the quintic residue
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classes mod 11 as:

{1, 10}
{4, 7}
{5, 6}
{2, 9}
{3, 8}.

Visibly, the residue classes follow the condition
given viz.,

! A ∈ H such that (A − 1) ∈ H, gH or gn−1H.

Hence, using the coloring scheme illustrated above,
there is no almost monochromatic triangle in a
graph of 11 points colored in 5 colors. So B5 = 12.

Similarly, for R7, consider the heptic residues in
the field Z29 and let g = 3. The residue classes are
as given below.

{1, 12, 17, 28}
{3, 7, 22, 26}
{8, 9, 20, 21}
{2, 5, 24, 27}
{6, 14, 15, 23}
{11, 13, 16, 18}
{4, 10, 19, 25}.

It can be seen that there can exist no almost
monochromatic triangle in a complete graph of 29
points in 7 colors. So B7 ≥ 30. For n = 9, take
p = 73 and g = 4. The residue classes are:

{1, 10, 22, 27, 46, 51, 63, 72}
{4, 15, 33, 35, 38, 40, 58, 69}
{6, 13, 14, 16, 57, 59, 60, 67}
{9, 17, 21, 24, 49, 52, 56, 64}
{5, 11, 23, 36, 37, 50, 62, 68}
{2, 19, 20, 29, 44, 53, 54, 71}
{3, 7, 8, 30, 43, 65, 66, 70}
{12, 26, 28, 32, 41, 45, 47, 61}
{18, 25, 31, 34, 39, 42, 48, 55}.

So B9 ≥ 74. For n = 11, take p = 89 and g = 9.

The residue classes are:

{1, 12, 34, 37, 52, 55, 77, 88}
{9, 19, 23, 39, 50, 66, 70, 80}
{5, 7, 8, 29, 60, 81, 82, 84}
{6, 17, 26, 44, 45, 63, 72, 83}
{25, 33, 35, 40, 49, 54, 56, 64}
{4, 30, 41, 42, 47, 48, 59, 85}
{3, 13, 22, 36, 53, 67, 76, 86}
{20, 27, 28, 32, 57, 61, 62, 69}
{2, 15, 21, 24, 65, 68, 74, 87}
{11, 18, 38, 43, 46, 51, 71, 78}
{10, 14, 16, 31, 58, 73, 75, 79}.

So B11 ≥ 90.
If we try to follow the method for n = 8, we get

p = 17 and g = 3, the residue classes being:

{1, 16}
{3, 14}
{8, 9}
{7, 10}
{4, 13}
{5, 12}
{2, 15}
{6, 11}.

Thus we see that the lower bound computed for
n = 8 is less than that computed for n = 7. As this
is scarcely possible, it must be acknowledged that
the lower bound for n = 8 is worthless and must be
replaced by that for n = 7. So

30 ≤ B8 ≤ 162. (3)

Unfortunately, the method fails to generate lower
bounds in case of n = 4, 6 and 10.

Combining results, we get (2). Other bounds,
as calculated on a computer, are given in Appendix
A.

5 Variation of the Problem

Another problem related to the Ramsey Numbers is
studied by Vania Mascioni [3]. This considers a fi-
nite metric space with distances between the points
belonging to the set {1, 2, . . . , n}. The problem
is to determine the number of points such that the
metric space does not contain an equilateral trian-
gle. This number is denoted by Dn. The known
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values of Dn are:

D1 = 3
D2 = 6
D3 = 12
D4 = 33

81 ≤D5 ≤ 95
251 ≤D6 ≤ 389
551 ≤D7 ≤ 1659.

(4)

Now, a generalization of this problem can be con-
cocted, which has a similar relationship to Mas-
cioni’s problem as the almost-monochromatic trian-
gle problem has to Ramsey’s Problem. An almost
equilateral triangle can be defined as follows:

Definition 13. Almost Equilateral Triangle
A triangle is defined to be almost equilateral if

its side-lengths differ by at most one unit.

Notice that an almost equilateral triangle is
necessarily isosceles. Now the following problem
presents itself: How many points should a metric
space contain such that it does not contain an al-
most equilateral triangle?

Definition 14. Cn

We define Cn to be the smallest integer m such
that any finite metric space (= fms) consisting of
m points and with distances in a given set must
contain an almost equilateral triangle.

The almost equilateral problem is very closely
related to the almost monochromatic problem.

To study Cn for different values of n, we need
to introduce the following concepts.

Definition 15. k-Neighborhood
The k-Neighborhood of a point is defined as the

set of all points at a distance k from it.

This differs from the almost monochromatic
color spectrum problem in that some triangles are
not allowed because the triangle inequality has to
be followed. Thus

Remark. Cn ≤ An for all values of n, so that
the upper bounds for An are therefore the upper
bounds for Cn.

Some elementary results regarding almost equi-
lateral triangles are easy to derive and are given
below.

Theorem 16. C1 = 3, C2 = 3, C3 = 5.

Proof. If the distances belong to {1}, then 3 points
will always form an equilateral triangle. So C1 = 3.
Similarly, if the distances belong to {1, 2}, then 3

points will always form an almost equilateral tri-
angle. So C2 = 3. If the distances belong to
{1, 2, 3}, consider the 1-neighborhood of point P .
There can only be one point in this neighborhood,
for, if there are two or more, they can only be at
distance 3 from each other to prevent an almost
equilateral triangle, which violates the triangle in-
equality. Similarly, there can be only one point in
the 2-neighborhood of P . The 3-neighborhood of P
can only be a metric space with distances belonging
to {1}, which has already derived to consist of max-
imum 2 points. Consider these as A and B and the
point in 2-neighborhood of P as C. Now A and B
can only be at distance 1 from each other, to avoid
an almost equilateral triangle. So is the case with
A and C, as well as B and C. Thus we are forced to
conclude that A, B and C form an equilateral tri-
angle. Thus, C3 ≤ 5. Now consider a tetrahedron,
which has 6 pairs of skew edges. Let each pair be
of the same length. This creates a complete graph
of 4 points in {1, 2, 3} metric space without an
almost equilateral triangle. Hence, C3 = 5.

Theorem 17. C4 ≤ 8.

Proof. As in Theorem 16, the 1-neighborhood of
P in case the distances belong to {1, 2, 3, 4}
can contain 1 point, the 2-neighborhood can con-
tain 2 points at a distance 4 from each other.
The 3-neighborhood is again a {1} and the 4-
neighborhood is a {1, 2} space, both of which can
contain 2 points. Therefore the maximum num-
ber of points without almost equilateral triangles is
1 + 1 + 2 + 2 + 1 = 7. So C4 ≤ 8.

6 Conclusion

The study of the original Ramsey Numbers Rn and
its variations An, Bn and Cn shows that all the dif-
ferent concepts are very closely related. In several
cases, expressions for one contain the others. We
conjecture that all these three numbers for different
values of n may end up supplementing each other,
in that knowing the values for some of them, all
other values can be calculated.

7 Further Work

The further research that is proposed includes
studying more of the properties of the original Ram-
sey Numbers Rn and its variations An, Bn and Cn.
As the upper bound for Bn depends on the upper
bound for the original Ramsey Numbers, the upper
bounds for many of the higher values of n could
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not be found out. Some further work on either ex-
tending the knowledge about Ramsey Numbers or
trying to make the formula for upper bound of Bn

independent of the Ramsey Numbers is proposed.
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A Appendix: Calculating the
Bounds on a Computer

Upper and lower bounds for Bn calculated on a
computer for n = 1 to n = 30 (if a value is not

given, it could not be found by the method de-
scribed):

B1 = 3
B2 = 3
B3 = 5
B4 ≤ 10
B5 = 12
B6 ≤ 32

30 ≤B7 ≤ 65
30 ≤B8 ≤ 162
74 ≤B9 ≤ 353

B10 ≤ 982
90 ≤B11 ≤ 2609

132 ≤B13

282 ≤B14

572 ≤B15

930 ≤B16

444 ≤B17

578 ≤B18

762 ≤B19

674 ≤B21

1290 ≤B23

1250 ≤B24

1602 ≤B25

1614 ≤B26

1974 ≤B29.
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