Introduction	
Theory	
Results	
Discussion	
Conclusion	

Microtubule Filament Tracing and Estimation

Rohan Chabukswar

Carnegie Mellon

Electrical and Computer Engineering Carnegie Mellon University

December 2, 2008

Discussion Conclusion	
Discussion	
Results	
Theory	
Introduction	

Introduction

- Microtubules
- Motivation

- Theory
- Background
- Deblurring
- Direction of Extension
- Thinning
- Thresholding

Results

- Intersecting Filaments
- Simulation
- Discussion 4
 - Future Work Tracing the Filaments

Introduction Theory Results Discussion Conclusion	Microtubules Motivation

- Microtubules are filamentous cytoskeletal structures composed of tubulin protein subunits.
- These subunits can add on, or dissociate from, the tubulin polymer rapidly, making them highly dynamic.
- Microtubules are critically involved in many essential cellular functions, such as chromosome segregation at mitosis and intracellular cargo transport.

	Introduction Theory Results Discussion Conclusion	Microtubules Motivation	
Introduction Motivation			

- Microtubules are generally studied using three dimensional fluorescence microscopy.
- The output is a 3D image of the microtubules, blurred due to
 - the lenses
 - the imaging device,
 - sampling and digitization
 - finite size of microtubules

	Introduction Theory Results Discussion Conclusion	Microtubules Motivation	
Introduction Aim			

- To automatically trace each microtubule filament in the 3D microscope image
- The traced image will be used to estimate statistics, like
 - Number of filaments
 - Average length
 - Distribution of length

Introduction	Background
Theory	Deblurring
Results	Direction of Extension
Discussion	Thinning
Conclusion	Thresholding

- The microtubules originate from a common center and grow outwards — density of filaments decreases from center to periphery
- Filaments grow in a straight line unless an obstacle exists

 minimum curvature constraint can be imposed to
 prevent wrong tracing of the tubules.
- Points of intersection of microtubules glow twice as bright as any other point on a single microtubule.

	Introduction Theory Results Discussion Conclusion	Background Deblurring Direction of Extension Thinning Thresholding	
Theory Deblurring			

- The input images in the tests are noise free.
- Actual images will have Poisson noise.
- Richardson-Lucy deconvolution algorithm can be used.

Introduction	Background
Theory	Deblurring
Results	Direction of Extension
Discussion	Thinning
Conclusion	Thresholding

Figure: Single Filament – Original Image

Introduction	Background
Theory	Deblurring
Results	Direction of Extension
Discussion	Thinning
Conclusion	Thresholding

Figure: Single Filament — Input Image

Deblurring Direction of Extension Thinning Thresholding

Deblurring Example Single Filament

Figure: Single Filament – Deconvolved Image

Introductio Theor Result Discussion	n Background Deblurring S Direction of Extension Thinning
Conclusion	Thresholding
Theory	

- After deconvolution, we are not guaranteed a thin image.
- While thinning as well as tracing filaments, it is essential to know the direction that the filament at that point has grown from, and the direction it is growing in.
- The Hessian is often used to determine this.

Introduction	Background
Theory	Deblurring
Results	Direction of Extension
Discussion	Thinning
Conclusion	Thresholding

• For an *n*-dimensional image $I(x_1, x_2, ..., x_n)$, the Hessian is

- Symmetric, real eigenvalues.
- Direction of extension of filament is given by eigenvector corresponding to minimum magnitude eigenvalue.
- For the discrete case, finite-difference version has to be implemented.

	Introduction Theory Results Discussion Conclusion	Background Deblurring Direction of Extension Thinning Thresholding	
Theory			

- Thinning of image achieved by non-maximal supression.
- Checks if a point is a local maximum along directions perpendicular to the direction of extension, and puts it to zero if it isn't.
- Quantize the angle, find perpendicular directions, check 4 values.
- Thinning can be used before deconvolution, but his will not work in presence of noise.

Background Deblurring Direction of Extensior Thinning Thresholding

Thinning Example Single Filament

Figure: Single Filament — Thinned Image

	Introduction	Background	
	Theory	Deblurring	
	Results	Direction of Extension	
	Discussion	Ininning	
	Conclusion	Inresholding	
Theory			

- Intensity data along the length of the filament can be used in future to detect intersections.
- Hysteresis thresholding is used as the basic idea. It completes broken filaments.
- 3 different intensity levels, and correspondingly 4 different threshold levels
- Anything below level 1 is 0, anything above level 4 is 2, anything between levels 2 and 3 is 1.
- Anything between levels 1 and 2 is 1 if one of its 26-neighbors is above level 2, 0 otherwise.
- Anything between levels 3 and 4 is 2 if atleast 2 of its 26-neighbors are 1.

Background Deblurring Direction of Extension Thinning Thresholding

Thresholding Example Single Filament

Figure: Single Filament – Thresholded Image

Results Intersecting Filaments

Figure: Intersecting Filaments - Original Image

-1

→ ∃ →

Intersecting Filaments Simulation

Results Intersecting Filaments

Figure: Intersecting Filaments – Input Image

Results Intersecting Filaments

Figure: Intersecting Filaments – Deconvolved Image Electrical & Computer ENGINEERING

Results Intersecting Filaments

Figure: Intersecting Filaments — Thinned Image

イロト イヨト イヨト イ

-1

-

Results Intersecting Filaments

Figure: Intersecting Filaments — Thresholded Image Electrical & Computer ENGINEERING

	Introduction Theory Results Discussion Conclusion	Intersecting Filaments Simulation
Results Simulation		

Figure: Simulation - Input Image

	Introduction Theory Results Discussion Conclusion	Intersecting Filaments Simulation
Results Simulation		

Figure: Simulation – Deconvolved Image

	Introduction Theory Results Discussion Conclusion	Intersecting Filaments Simulation	
Results Simulation			

Figure: Simulation — Thresholded Image

Introduc Thi Rec Discus Conclu	ttion sory sults Future Work — Tracing the Filaments sion
Discussion	

- The non-maximal suppression works well on input images without noise, but the results are not so good with deconvolved images.
- Deconvolution step is essential to remove noise.
- Additional step of convolving the deconvolved image with the same or different PSF should give an noise-free blurred image
- Given PSF is elongated in *z*-direction, which may cause problems in finding direction of extension.

	Introduction Theory Results Discussion Conclusion	Future Work — Tracing the Filaments
Future Work Tracing the Filaments		

- The key idea used is the same as that of connected components labeling.
- Connected component labeling uses X_{k+1} = (X_k ⊕ B) ∩ A iteratively.
- In this case, image should be dilated only in the direction of extension of the filament, not isotropically.
- Only needed near intersection of two filaments, already pinpointed in the preprocessed image.
- The initial pixels can be found out by searching inwards from the periphery.

- Preprocessing of the image is one of the most challenging aspects of automatization of this task.
- Future work will involve tracing the filaments.
- After implementing on simulated images, the algorithm can be tested on actual images obtained from fluorescence microscopy.

