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holm, for their insight and expert opinions.

For my friends who have occupied offices, past and present, in the Porter

Hall B Level workspace — Luca Parolini and Ajinkya Bhave, thanks for being

partners-in-crime around town. I thank June Zhang, for all the madness

around the office, Kyri Baker for being one of the coolest persons I know, and

Jim Weimer, for giving me a level of craziness to aspire to. Aurora Schmidt,

Nikos Arechiga, Akshay Rajhans, Joel Harley, Kyle Anderson, JY Joo, Sergio

Pequito, Javad Mohammadi, Andrew Hsu, and Joya Deri, thanks for all the

inane conversations and arguments with me and June around lunch time. I

will miss these dearly, although I still hope to join in on them sometimes.

Matthias Althoff, Jonathan Donadee, Milos Cvetkovic, and Evgeny Toropov,

thanks for getting me to join in fun stuff around Pittsburgh. Anit Sahu,

vii



Steven Aday, Nipun Popli, Subhro Das, and everyone else, thank you for all

the celebrations, all the parties, all the laughs, all the madness and scandals

around the office. I would like to thank my other friends in and around

CMU, especially the Quiz Club, which kept me replete with inconsequential

knowledge, and my friends around Pittsburgh, Shishir, Sunny, Vinay et al,

for the dinners and movies on Friday nights.

I would like to thank the other people in Bruno’s group for working with

me — Yilin Mo, Dragana Bajovic, Sabina Zejnilovic, Niranjini Rajagopal,

Xiaoqi Yin, Sean Weerrakody, and Xiaofei Liu.

I would like to thank Claire, Carol, and other people around the de-

partment for working behind the scenes in making everything work well,

for keeping us supplied with coffee, and for patiently deciphering the ball

of reimbursement receipts that I used to bring back from my domestic and

international travels.

I would like to take this opportunity to thank Radhika Marathe, one

of my oldest and closest friends, who for years has been listening to me

rant about academic life, professional life, social life, my parents, and other

countless topics. I would like to thank Devaki Erande, who has been a source

of constant support, even at the lowest points in my life, most of which

were during my PhD years. To my other friends outside Pittsburgh, Aniket,

Robin, Shriharsh, Sangram, Kartik, Rahul, Meenakshi, you guys have always

been around for me, and if I have been remiss in losing contact with some of

you for periods of time because of grad school, I promise I will get back in

viii



touch.

On a rather unconventional note, I would like to thank Tony Horton,

who, unbeknownst to him, helped me regain my physical and mental health

with his P90X workouts (mens sana in corpore sano, after all), and drove

home several maxims including “No Excuses”.

I would like to thank my whole family for being a part of who I am today.

But most of all, my heartfelt gratitude goes to my mom and dad, who

were always there for me, who encouraged me without pushing, inspired me

without forcing, supported me without directing, and guided me without

steering. You always approved of me doing what I wanted, and prompted

me to do my best in everything I took up. It has been a long journey through

my schooling years, and I hope I will make you proud and attain the heights

which you envisage for me.





Acknowledgements

This research was supported in part by CyLab at Carnegie Mellon by grant

DAAD19-02-1-0389 from the Army Research Office, grant NGIT2009100109

from the Northrop Grumman Information Technology, Inc. Cybersecurity

Consortium, and grant 0955111 from the National Science Foundation. The

views and conclusions contained here are those of the authors and should not

be interpreted as necessarily representing the official policies or endorsements,

either express or implied, of ARO, CMU, CyLab, NSF, NGC, or the U.S.

Government or any of its agencies.





Abstract

A SCADA system employing the distributed networks of sensors and actu-

ators that interact with the physical environment is vulnerable to attacks

that target the interface between the cyber and physical subsystems. An

attack that hijacks the sensors in an attempt to provide false readings to

the controller (for example, the Stuxnet worm that targeted Iran’s nuclear

centrifuges) can be used to feign normal system operation for the control sys-

tem, while the attacker can hijack the actuators to send the system beyond

its safety range. This thesis extends the results of a previously proposed

method. The original method proposed addition of a randomized “water-

marking” signal and checking for the presence of this signal and its effects

in the received sensor measurements. Since the control inputs traverse the

cyberphysical boundary and make their effects apparent in the sensor mea-

surements, they are employed to carry this watermarking signal through to

the system and back to the SCADA controller. The sensor measurements

are compared to the expected measurements (calculated using a suitably de-

layed model of the system within the controller). This methodology is based

on using the statistics of the linear system and its controller. The inclu-

sion of a randomized signal on the control inputs induces an increase in the

performance cost of the physical system. This thesis proposes a method of

optimization of the watermarking signal based on the trade-off between this

performance cost and the attack detection rate, by leveraging the distribu-

tion the watermarking signal over multiple inputs and multiple outputs. It
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is further proved that regardless of the number of inputs and outputs in the

system, only one watermarking signal needs to be generated. This optimiza-

tion, and its necessity in improving the effectiveness of the detector without

detriment to the performance cost, are demonstrated on a simulated chemical

plant. The thesis also proposes another methodology that does not rely on

these statistics, but is instead based on calculating the correlation between

the received sensor measurements and the expected measurements accrued

from the model inside the controller.

Generalizing the form of attack even further to attacks that target the

integrity of the data sent to the actuators and received from the sensors, this

thesis demonstrates the effect of such integrity attack on electricity market

operations, where the attacker successfully uses a vulnerability in the Global

Position System to break synchronicity among dispersed phasor measure-

ments to gain a competitive advantage over other bidders in the electricity

market. In an effort to make state estimation robust against integrity at-

tacks, the sensors and states are modeled as binary variables. Sensor net-

works use binary measurements and state estimations for several reasons,

including communication and processing overheads. Such a state estimator

is vulnerable to attackers that can hijack a subset of the sensors in an effort

to change the state estimate. This thesis proposes a method for designing the

estimators using the concept of invariant sets. This methodology relies on

identifying the sets of measurement vectors for which no amount of manipu-

lation by the attacker can change estimate, and maximizing the probability

xiv



that the sensor measurement vector lies in this set. Although the problem

of finding the best possible invariant sets for a general set of sensors has

double-exponential complexity, by using some simplifications on the types of

sensors, this can be reduced significantly. For the problem that employs all

sensors of the same type, this method reduces to a linear search. For sensors

that can be classified into two types, this complexity reduces to a search

over a two-dimensional space, which is still tractable. Further increase in

the confidence of the estimate can be achieved by considering the correlation

between the sensor measurements.
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Chapter 1

Introduction

This thesis examines the security of control and estimation in cyberphysical

systems.

Cyberphysical systems (CPS) often employ distributed networks of em-

bedded sensors and actuators ([1]) that interact with the physical environ-

ment, and are monitored and controlled by a Supervisory Control and Data

Acquisition (SCADA) system. Distributed sensors and actuator networks are

often seen in varied applications, such as critical infrastructure monitoring,

autonomous vehicle control, healthcare, etc.

Given the ubiquity of cyberphysical systems, and the reliance on their

performance, incentives are abundant for miscreants to attack such systems,

from simple economic reasons (reducing gas bills), and advantages over in-

dustrial competitors (manipulating differential electricity pricing), to politi-

cal espionage and sabotage (derail national scientific and military programs)

and full-fledged terrorism (cause communications breakdown, traffic disrup-
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tions). Isolation of CPS networks and controllers from the Internet can only

offer a limited amount of protection, not only because of the advent of in-

creasingly “smart” cyberphysical systems like Smart Grids, which require

Internet access, but also because of the increasing deployment of sensors to

remote locations where the sensors themselves, and the communications to

and from them, cannot be adequately monitored for security.

Additionally, organized criminals, industrial spies, and global terrorists

have proved themselves adept at introducing malware into heavily secured

and isolated networks by relying on human errors. An example of alleged digi-

tal warfare, waged against Iran’s Natanz nuclear facility, is the Stuxnet worm,

which seems to have been specially designed to reprogram certain industrial

centrifuges and make them fail in a way that was virtually undetectable ([2]).

The worm, which was chiefly used in coordination with espionage malware,

was introduced by infected USB flash drives ([3]), and further used peer-to-

peer calls to infect other computers inside private networks ([4]). It is evident

that relying on isolation of networks and components, and in general, secu-

rity with obscurity, is at best only a short-term solution. The worm itself

has been claimed (by Edward Snowden, in an interview with the German

newspaper “Der Spiegel”, [5]) to be a part of a US-Israeli operation dubbed

“Operation Olympic Games” ([6]). Other speculations and allegations have

flown back and forth, accusing various national intelligence agencies and even

the manufacturer, but irrespective of the attacker, target or intention, this

worm has indubitably brought to light serious security susceptibilities in in-
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dustrial control systems. This attack resonated with a recent concern in

distributed control system security, whereby an attacker could modify the

software or environment of some of the networked sensors and/or actuators,

to launch a coordinated attack against the system infrastructure.

In view of the present threat of global terrorism, a power grid failure, a

local breakdown of telecommunications system, or a disruption of air traf-

fic control (ATC) at a major hub could all be executed as an antecedent

to a full-fledged invasion. Such threats have been predicted ([7]) and even

made into movies. CPS infrastructures like power grids, telecommunication

networks, air traffic controllers — vital to the normal operation of a society

— are safety critical, and a successful attack on one of them, or worse, a

coordinated attack on two or more of them, can significantly hamper the

economy, endanger human lives or even make the community vulnerable to

foreign aggression. This makes the design of secure cyberphysical systems of

paramount importance.

A conventional method of security is using symmetric and asymmetric

encryption and decryption to secure the communications. While this ap-

proach might be sufficient for day-to-day usage, in cases of national security

a more robust security mechanism is called for. Cryptographic keys are bro-

ken and stolen daily, but even if they were secure, an attacker could directly

attack the physical environment of the components, without even touch-

ing the communication network. Such an attack is feasible when sensors

and actuators are spatially distributed in remote locations. There are other
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methods of approaching CPS security, most of which rely either on the in-

formation content of the system (confidentiality, integrity, availability), or

on the robustness of controllers and estimation, detection and identification

algorithms. The problem with concentrating on the information content is

the lack of a system model, which can blind the detector to a wide variety of

attacks (for example, lowering electricity bills by bypassing the meter). On

the other hand, robust controllers and algorithms tend to assume random,

uncoordinated failures, which is hardly the case during an attack.

Consequently, system knowledge and traditional-cyber security are both

essential to ensure the secure operation of safety critical cyberphysical sys-

tems.

The rest of the thesis is organized as follows: In Chapter 2, the replay

attack problem is formulated and the previous theoretical work on the prob-

lem is indicated. A new countermeasure that can effectively detect the replay

at the expense of control performance, for a general form of controller and

detector is also introduced and analyzed theoretically. In Chapter 3, a prac-

tical problem requiring such a defense system against a replay attack is put

forth. The countermeasures outlined in Chapter 2 are applied to the system

in succession, and compared.

In Chapter 4, a more sophisticated problem requiring a defense against

integrity attacks is presented. The attack methodologies for different lev-

els of attacker resources are provided. The current state-of-the-art defense

measures are indubitably a part of the system and the attacker is shown to
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circumvent them. The extent of disruption for a particular attacker objective

is simulated.

In Chapter 5, a basic version on the integrity attack, using static de-

tection, is formulated, and the previous theoretical work on the problem is

indicated, along with the limitations for practical application. The rational-

ization for simplification of the problem in practical situation is provided.

The optimal detector for the simplified case is provided. The problem is

then generalized for a wider class of practical application and the optimal

detector is provided for this situation. The problem formulation is further

generalized, in a way that can be applied to the system of Chapter 4.

Finally, chapter 6 concludes with the results and summary of the thesis,

and discusses the direction of future work.

1.1 Motivation

Cyberphysical attacks can be classied by three parameters ([8]):

1. A priori System Knowledge: Attacker’s knowledge of system parame-

ters,

2. Disclosure Power: Attacker’s access to real-time system information,

and

3. Disruption Power: Attacker’s capability to disturb the system.

Figure 1.1 classifies four examples of cyberphysical attacks. An eavers-

dropping attack is one where the attacker needs to neither know the system
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parameters, nor disrupt the system — he only snoops on the sensor values.

Similarly, a denial-of-service (DoS) attack is one where the attacker needs

only to disrupt the system by preventing communication between the com-

ponents — he does not need to know any system parameter or current state.

In contrast, a replay attack requires both the current system state as well as

disruption on the part of the attacker to be successful.

Disclosure Power

S
y
st
em

K
n
ow

le
d
ge

Di
sru

pt
ion

Po
we

r Eavesdropping

DoS Attack

Zero-Dynamics
Attack

Replay Attack

Figure 1.1: Classification of Cyberphysical Attacks

This thesis deals with integrity attacks on the sensors of a SCADA sys-

tem. Sensors are usually the most vulnerable components of a secure system

— they are constrained in energy,which constrains their communicating and

computing capabilities. Security implemented by using sophisticated en-

cryption techniques might be too heavy for the sensors’ limited computing

abilities, which makes each sensor a weak link in the chain of security. The

problem is further exacerbated because the number of sensors of a system
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is usually large, larger than the number of actuators. Any chain is only as

strong as its weakest link, and to ensure the security of safety-critical cyber-

physical systems, the security of the sensors and the communication from

them is of paramount importance.

The applications of resilience to integrity attacks are myriad. These

methodologies can be implemented on process control systems (as evidenced

by the simulations on a chemical plant), smart grids and other distribution

networks, and so on.

1.2 Thesis Contributions

This work builds on the previous theoretical results. The first paper by Mo

and Sinopoli ([9]) that proposed the original problem and attack strategy

introduced the concept of physical watermarking, with some simulations on

a model of a moving vehicle.

This thesis further enhances the original technique and makes the design

process more systematic. In the case of Multi-Input-Multi-Output (MIMO)

systems, a methodology to minimize the loss in control performance caused

by the random watermarking signal is provided. This exploits the myriad of

ways the watermarking signal can be disseminated through the multiple in-

puts — strength of signal on each input, interdependence of these components

(or lack thereof), etc. — to extract the optimal form of the watermarking

signal. It is further substantiated the this optimal watermarking signal, be-

ing the hallmark of the physical system, is independent of the specific form
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of the optimization problem, thus logically dividing the design of the security

feature into two independent parts. The first part, which can be executed

offline, involves setting up and solving a considerable linear programming

problem. The form of the watermark, obtained from this part, is used in the

second step, which designs the strength of the watermarking signal. This

subsequent step can be executed online, and the strength of the signal can

be recomputed on the fly, based on current security threat levels and the

required false-alarm/detection rate values required.

Moreover, it is demonstrated that the optimal watermarking signal will

always have all components dependent on one — in essence, only one ran-

dom number generator is required to generate the watermark. This results

caps the requirements on computational power and the extent of the trusted

computational base essential to the security of the control system.

All these techniques, and the comparison of their performance, are demon-

strated on a single system, a linearized version of a famous control problem

of a chemical plant.

In order to demonstrate, as an example, the economic impact of attacks on

cyberphysical systems, an attack on the Phasor Measurement Units (PMUs),

currently being installed in smart grids, was designed. This attack was based

on the previous work of Xie et al ([10]), who studied the economic impact of a

potential class of integrity cyber attacks on electric power market operations.

A simulation of this attack was carried out to demonstrate that, even with

a very restricted attack targeting just the timing reference of such PMUs,

8



an intelligent attacker can manipulate the locational electricity prices, with

a view to maximizing profits for the bidding entities involved in the market.

The necessity of defense against such attacks, combined with the com-

plexity of tackling a continuous-state non-linear system, gives rise to the

formulation of an approximation of such a system, focusing on binary state

variables and binary sensors. These sensors are then segregated into two

classes in order to better resemble the smart grid, where, although the PMUs

promise better measurements and state estimation, are too expensive to be

installed on more than a fraction of the buses (30% penetration is the most

optimistic scenario that industries are targeting). Building on a previous

technique, this thesis attempts to reduce the complexity of the combinato-

rial formulation using simplifying assumptions.

A closer approximation to physical systems like smart grids is further

achieved by considering the effect of correlation in the sensor measurements

induced by the physics of the system in question. The adherence to physical

laws causes the sensor readings to have significant correlations across the

grid, and this correlation can be leveraged to further restrict the possibility

of an undetected attack occurring.

9
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Chapter 2

Replay Attacks: Theoretical Problem

In this chapter, first the methodology proposed by Mo and Sinopoli ([9]) for

detecting replay attacks in general linear systems is briefly reviewed, after

which the new system and attack models are introduced. The optimization of

the existing authentication signal is then proposed, to maximize the detection

rate while keeping the cost-increase bounded. The authentication signal for

the new system is proposed, and its optimization is discussed.

2.1 Previous Work

The importance of addressing the security of cyberphysical systems has been

stressed by the research community, by, among others, Byers and Lowe

([11], who have summarized a number of industrial security incidents, and

Cárdenas et al ([12]), who first identified and defined the problem of secure

control. In a later paper, Cardenas et al ([13]) discuss the cyberphysical

impact of denial-of-service (DoS) attacks, which interrupt information flow
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from the sensors, actuators and the control system, and deception attacks

that compromise the integrity of data packets. DoS attacks and a feedback

control design resilient to them are further discussed by Amin et al ([14]),

which concentrates on the security of the ’’cyber’’ aspect of the system. In

contrast, this thesis assumes that the communication within the different

components of the system is secure, and instead focuses on the security of

the boundary between the cyber and physical aspects of the system.

A substantial amount of research has been carried out in analyzing, de-

tecting and failure-handling CPS. Sinopoli et al study the effect of random

packet drops on controller and estimator performance ([15], [16]). Several

failure-detection schemes in dynamic systems are reviewed by Willsky ([17]).

Some CPS scenarios, for example, those proposed by Stengel and Ray ([18]),

are capable of utilizing results from robust control, where the authors con-

centrate on designing controllers for systems with unknown or uncertain pa-

rameters. While these works make the assumption that failures are either

random or benign, a shrewd attacker, such as is considered in this thesis, can

carefully construct an attack strategy to deceive detectors and make even

the most robust controllers fail.

Alpcan and Başar ([19]) applied game theoretic principles formally to in-

trusion detection to develop a decision and control framework. Their work

considers the treatment of intrusion-detection sensors, not on the actual

scheme of detection that each sensor employs. Controllability and observ-

ability of linear systems has been analyzed using graph theory by Sundaram
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and Hadjicostis ([20]), who provide methods for reaching consensus in the

presence of malicious agents. The proposed methods are combinatorial in

nature and thus computationally expensive. In scenarios such as distributed

sensor environments, computational cost can be prohibitive.

Robust estimation using sensors in untrusted environments has been in-

vestigated by Lazos and Poovendran ([21]), and again by Lazos et al ([22]),

where the authors propose robust localization algorithms. Their work con-

centrates on solely on securely determining the location information of the

sensors. In contradistinction, this thesis focuses on the integrity of the ac-

tual sensor data. Pasqualetti et al ([23], [24]) consider intentional malicious

data attack, and address the problem of distributed monitoring and intrusion

detection. Distributed formation control in the presence of attackers is stud-

ied by Zhu and Mart́ınez ([25]) where a distributed control algorithm using

online adaptation is proposed. All of these scenarios, however, unlike the

present work, consider a noiseless process and environment, which is unlikely

to be the case in practical applications.

Giani et al ([26]) address the problem of secure and resilient power trans-

mission and distribution, and point out several potential threats in modern

power systems. A comprehensive survey of current results in networked con-

trol systems has been carried out by Hespanha et al ([27]). Dán and Sandberg

([28]) analyze stealth attacks on power system state estimators, and use a

static system formulation unlike the current work. Sandberg et al ([29]) study

the analysis of large-scale power networks of using proposed security indices.
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Secure state-estimation and control of systems under attack is further inves-

tigated by Fawzi et al ([30], [31]). The security of power networks, however,

focus on static systems, contrary to the fundamental formulation of a Linear

Time-Invariant (LTI) system analyzed in this paper.

Considerable research has been devoted to constructing estimators that

are not unduly affected by outliers or other small departures from model

assumptions (Maronna et al [32], Huber and Ronchetti [33]), which can be

used to nullify the effect of outliers. However, the case of an attack is quite

different from randomly occurring outliers, and such methods need to be

reformulated for CPS. Bad data detection has been used in power grids for a

long time (Abur and Expósito [34]). Liu et al ([35]) and Sandberg et al ([29])

consider how an attacker can design and inject inputs into measurements to

change state estimation results.

2.2 Problem Formulation

We consider a discrete-time linear time-invariant system with n state vari-

ables. The physical part of system has p actuators as control inputs, and m

sensors that measure a linear function of the system state. The cyber-part

includes a communication network that communicates all the sensor readings

to a base station at each discrete time step. The base station is equipped

with a state estimator in the form of a Kalman filter, a linear controller that

minimizes a quadratic cost, and a detector that analyzes the statistics of the

noise to detect an attack.

14



This subsection presents the problem formulation by deriving the Kalman

filter, the LQG controller and χ2-detector for the case under study. The

notation developed below is used for the remainder of the section.

2.2.1 System Dynamics

Consider a linear, time invariant (LTI) system, with the following state dy-

namics:

xk+1 = Axk +Buk + wk, (2.1)

where xk ∈ Rn is the vector of state variables at time k, uk ∈ Rp is the control

input, wk ∈ Rn is the process noise at time k, and x0 is the initial state. We

assume wk, x0 are independent Gaussian random variables, x0 ∼ N (x̄0,Σ),

wk ∼ N (0, Q).

A sensor network monitors the system described in Equation (2.1). At

each step all the sensor readings are sent to a base station. The observation

equation can be written as

yk = Cxk + vk, (2.2)

where yk ∈ Rm is a vector of measurements from the sensors and vk ∼

N (0, R) is the measurement noise independent of x0 and wk.

It is assumed that the system operator wants to minimize the following
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infinite-horizon linear quadratic Gaussian cost:

J = min lim
T→∞

E
1

T

[
T−1
∑

k=0

(

xT
kWxk + uT

kUuk

)

]

, (2.3)

where W,U are positive semi-definite matrices that decide the relative weight

given to the deviation of the state variables from the operating point and

the power required for the control inputs. uk is measurable with respect

to y0, y1, . . . , yk, i.e., uk is a function of the previous observations. It is a

well-known result that the separation principle holds in this case, and the

optimal solution of Equation (2.3) is a combination of Kalman filter and

LQG controller.

2.2.2 The Estimator — Kalman Filter

The Kalman filter provides the optimal state estimate x̂k|k and takes the

following form:

x̂0|−1 = x̄0, P0|−1 = Σ, (2.4)

x̂k+1|k = Ax̂k +Buk, Pk+1|k = APkA
T +Q,

Kk = Pk|k−1C
T
(

CPk|k−1C
T +R

)−1
,

x̂k = x̂k|k−1 +Kk

(

yk − Cx̂k|k−1

)

, (2.5)

Pk = Pk|k−1 −KkCPk|k−1.

Although the Kalman filter uses a time varying gain Kk, it is known that

this gain will converge if the system is detectable. In practice the Kalman
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gain usually converges in a few steps. Hence, P and K can be defined as

P
∆
= lim

k→∞
Pk|k−1, K

∆
= PCT

(

CPCT +R
)−1

. (2.6)

Since control systems usually run for a long time, for all practical pur-

poses, the system can be assumed be at steady state since the beginning.

That is, the initial condition Σ = P is assumed, which reduces the Kalman

filter to a fixed gain estimator, taking the following form:

x̂0|−1 = x̄0, x̂k+1|k = Ax̂k +Buk, (2.7)

x̂k = x̂k|k−1 +K
(

yk − Cx̂k|k−1

)

.

2.2.3 The Controller — Linear Quadratic Gaussian Controller

The LQG controller is a fixed gain linear controller based on the optimal

state estimation x̂k, and takes the following form:

uk = u∗
k = −

(

BTSB + U
)−1

BTSAx̂k, (2.8)

where u∗
k is the optimal control input and S satisfies the Riccati equation

S = ATSA+W − ATSB
(

BTSB + U
)−1

BTSA. (2.9)

Let L
∆
= −

(

BTSB + U
)−1

BTSA, then u∗
k = Lx̂k. The optimal value of

objective function given by the optimal estimator and controller in this case
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is

J = tr (SQ) + tr
[(

ATSA+W − S
)

(P −KCP )
]

. (2.10)

2.2.4 χ2 Failure Detector

The χ2 detector ([36], [37]) is widely used to detect anomalies in control sys-

tems. It leverages the fact that the residues after Kalman estimation and

LQG control are zero-mean Gaussian, making the weighted sum-of-squares

of these residues follow a χ2-distribution. Use of other detectors, and in

fact other combinations of estimators, controllers and detectors will be com-

mented upon in section 2.7.

Prior to introducing the detector, it is necessary to characterize the prob-

ability distribution of the residue of the Kalman filter:

Theorem 1. For the LTI system defined in Equation (2.1) with the Kalman

filter and the LQG controller, the residues yi − Cx̂i|i−1 of the Kalman filter

are independent and identically distributed (i.i.d.) Gaussian distributed with

zero mean and covariance P, where P = CPCT +R.

Proof. The proof is given by Mehra and Peschon ([36]).

Let

gk
∆
=

k∑

i=k−T +1

(

yi − Cx̂i|i−1

)T
P

−1
(

yi − Cx̂i|i−1

)

, (2.11)

where T is the window size. Based on Theorem 1, it is known that when

the system is operating normally, gk has a χ2 distribution with mT degrees
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of freedom1, implying that there is lower probability that a larger gk occurs.

Therefore, the χ2 detector at time k takes the following form:

gk
H0

≶
H1

η, (2.12)

where η is the threshold, usually chosen for a specific false alarm probability.

If gk is greater than the threshold, then the detector will trigger an alarm.

2.2.5 Attacker Model

It is assumed that a malicious third party wants to break the control system

described above. The attacker is assumed to have the capability to perform

the following actions:

1. He can inject an external control input ua
k into the system.

2. Conservatively, he can read all sensor readings and modify them arbi-

trarily. The readings modified by the attacker are denoted by y′k.

Given these capabilities, the attacker is assumed to implement an attack

strategy, which can be divided into two stages:

1. The attacker records a sufficient number of yks without giving any input

to the system.

2. The attacker gives a sequence of desired control input while replaying

the previous recorded yks.

1The concept of degrees of freedom is a component of the definition of the χ2 distribu-
tion. Please refer to Scharf and C. Demeure ([38]) for more details.
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Remark 2. It is important to note the lack on the part of the attacker to read

the control inputs sent to the actuators. This assumption is vital in not dis-

closing the key in the cryptosystem — the watermarking signal. In the event

that the attacker can read the control inputs, he might very well set up a fake

system that takes these control inputs, generates the necessary measurements

and sends them over to the controller, thereby completel dissociating the ac-

tual system and the controller. This is equivalent to a man-in-the-middle

attack, and there is no way for the detector to know that such an attack has

taken place. The only way to detect such an attack would be to introduce a

“shared secret” between the controller and the system. However, the design

of such a mechanism is out of the scope of the current work.

The attack on the sensors can be executed by breaking the cryptography

algorithm. Another way to perform an attack, which is thought to be much

harder to defend, is to use physical attacks. For example, the readings of

a temperature sensor can be manipulated if the attacker puts a heater near

the sensor. Such kinds of attacks may be easy to carry out when sensors are

spatially distributed in remote locations.

When the system is under attack, the controller cannot perform closed-

loop control, since the sensory information is not available. Therefore, control

performance of the system cannot be guaranteed during replay attack. The

only way to counter such an attack is to detect it happening.

In the attacking stage, the goal of the attacker is to make the fake readings

y′ks look like normal yks. Replaying the previous yks is just the easiest way
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to achieve this goal. There are other methods, such as machine learning or

system identification, to generate a fake sequence of readings.

2.3 Previous Work

This section focuses on recapping the results previously accrued by Mo and

Sinopoli ([9]).

2.3.1 Feasibility Of Attack

If we define A
∆
= (A+BL) (I −KC), then it is proven by Mo and Sinopoli

([9]) that if A is stable, the distribution of gk under replay attack will con-

verge exponentially to the same distribution as gk without the attack. As

a result the asymptotic detection rate of the χ2 detector is the same as its

false alarm rate, i.e., the detector is unable to distinguish a system under the

replay attack from a system that is running normally.

2.3.2 Countermeasure — Physical Watermarking

A watermark is a timeworn, well-established method of security and authen-

tication, established in Italy during the thirteenth century. In its original

sense, it is a recognizable image or text in a paper usually formed by thick-

ness and/or density variations in the paper. The watermark can be discerned

as a shaded pattern when viewed by reflected or transmitted light, which

however, interferes only minimally or not at all with the printed or writ-

ten matter on the paper. Watermarks are used to this day on banknotes,

passports and postage stamps to prevent counterfeiting. Figure 2.1 shows a
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Figure 2.1: A twenty euro banknote held against the light to show the wa-
termark and the denomination. (Source: Wikimedia Foundation)

twenty-euro banknote held against the light to show the watermark and the

denomination.

This principle of the physical watermark has been employed in recent

years in the form of a digital signal to identify ownership and source of digital

media like images, sound files and movies. Like traditional watermarks,

digital watermarks are only discernible after applying some algorithm.

To detect a replay attack in the linear system under question, a small

random authentication signal ∆uk ∼ N (0,Q) is superimposed on the op-

timal control input u∗
k, which serves as a time stamp. It is proved that
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asymptotically the expectation of gk under the attack will increase to

lim
k→∞

E [gk] = mT + 2tr
(

CT
P

−1CU
)

T . (2.13)

where U is the solution of the Lyapunov equation

U −BQBT = A U A
T . (2.14)

The main problem of the combination of a Linear Quadratic Gaussian

controller and a Kalman filter is that the whole control system is fairly static,

which renders it vulnerable to a replay attack. In order to detect such a replay

attack, one methodology is to redesign the control signal as

uk = u∗
k +∆uk, (2.15)

where u∗
k is the optimal LQG control signal and the sequence ∆uk is drawn

from an i.i.d. Gaussian distribution with zero mean and covariance Q, and

independent of u∗
k. Figure 2.2 shows the system diagram, including the at-

tacker and the watermarking signal.

The sequence ∆uk acts as a time-stamped watermark, an authentication

signal. It is chosen to be zero mean so as not to introduce any bias into the

system. The presence of this extra authentication signal will cause the con-

troller to not be optimal — in order to decrease the vulnerability of the system

to the attack, the control performance must be sacrificed. Mo and Sinopoli
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Figure 2.2: System Diagram with Physical Watermarking

([9]) proved that the increase in LQG cost (∆J) is tr
((

U +BTSB
)

Q
)

.

The remaining chapter section details the theoretical results beyond the

work detailed above.

2.4 New Countermeasure — Using an Unstable A

The feasibility result in [9] is that if A is unstable, then gk goes to infin-

ity exponentially fast, triggering the detector. One possible way to counter

the replay attack is to redesign the control system, i.e. using non-optimal

estimation and control gain matrices K and L, so that A becomes unstable

while maintaining stability of the system. However, since K and L no longer

remain optimal in the LQG sense, the LQG cost does increase.

The LQG cost for using non-optimal K and L can be characterized. It is
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known that

xk+1 = Axk +Buk + wk = Axk +BLx̂k + wk, (2.16)

and

x̂k+1|k = Ax̂k +Buk = (A+BL) x̂k

x̂k+1 = x̂k+1|k +K
(

yk+1 − Cx̂k+1|k
)

= (I −KC) (A+BL) x̂k +Kyk+1

= (I −KC) (A+BL) x̂k +K (Cxk+1 + vk+1)

= KCAxk + (A+BL−KCA) x̂k +KCwk +Kvk+1. (2.17)

Equation (2.16) and Equation (2.17) can be written in matrix form as

⎛

⎜
⎝

xk+1

x̂k+1

⎞

⎟
⎠ =

⎛

⎜
⎝

A BL

KCA A+ BL−KCA

⎞

⎟
⎠

⎛

⎜
⎝

xk

x̂k

⎞

⎟
⎠+

⎛

⎜
⎝

I

KC

⎞

⎟
⎠wk +

⎛

⎜
⎝

0

K

⎞

⎟
⎠ vk+1.

(2.18)

Let Â be defined as

Â
∆
=

⎛

⎜
⎝

A BL

KCA A+BL−KCA

⎞

⎟
⎠ . (2.19)

Moreover, let R̂ be defined as the covariance matrix of the second and third
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terms on the right hand side of Equation (2.18):

R̂
∆
=

⎛

⎜
⎝

I

KC

⎞

⎟
⎠Q

(

I CTKT

)

+

⎛

⎜
⎝

0

K

⎞

⎟
⎠R

(

0 KT

)

(2.20)

The LQG cost for non-optimal K and L can now be derived, which is

given by the following theorem:

Theorem 3. The LQG cost of using arbitrary estimation and control gain

K and L is

J = tr

⎛

⎜
⎝

⎛

⎜
⎝

W 0

0 LTUL

⎞

⎟
⎠ Q̂

⎞

⎟
⎠ , (2.21)

where Q̂ is the solution of the following Lyapunov equation:

Q̂ = ÂQ̂ÂT + R̂. (2.22)

Proof. It is easy to see that since a fixed gain controller and estimator is

used,

J = lim
k→∞

xT
kWxk + uT

kUuk, (2.23)
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which can be then written in matrix form as

J = lim
k→∞

(

xT
k uT

k

)

⎛

⎜
⎝

W 0

0 U

⎞

⎟
⎠

⎛

⎜
⎝

xk

uk

⎞

⎟
⎠

= lim
k→∞

tr

⎛

⎜
⎝

⎛

⎜
⎝

W 0

0 U

⎞

⎟
⎠

⎛

⎜
⎝

xk

uk

⎞

⎟
⎠

(

xT
k uT

k

)

⎞

⎟
⎠

= lim
k→∞

tr

⎛

⎜
⎝

⎛

⎜
⎝

W 0

0 LTUL

⎞

⎟
⎠Cov

⎛

⎜
⎝

⎛

⎜
⎝

xk

uk

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠ . (2.24)

Let

Q̂
∆
= lim

k→∞
Cov

⎛

⎜
⎝

⎛

⎜
⎝

xk

uk

⎞

⎟
⎠

⎞

⎟
⎠ . (2.25)

By Equation (2.18),

Cov

⎛

⎜
⎝

⎛

⎜
⎝

xk+1

uk+1

⎞

⎟
⎠

⎞

⎟
⎠ = ÂCov

⎛

⎜
⎝

⎛

⎜
⎝

xk

uk

⎞

⎟
⎠

⎞

⎟
⎠ ÂT + R̂. (2.26)

Taking the limit on both sides, Q̂ becomes the solution of the following

Lyapunov equation

Q̂ = ÂQ̂ÂT + R̂.
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Therefore, the LQG cost is given by

J = tr

⎛

⎜
⎝

⎛

⎜
⎝

W 0

0 LTUL

⎞

⎟
⎠ Q̂

⎞

⎟
⎠ .

There might not be enough freedom to redesign the control, which is

required for this countermeasure to be implemented. However, the inclusion

of this method is not just for the sake of completeness — as gk increases

exponentially, this method provides the highest asymptotic probability of

detection, in the case that it is feasible.

2.5 Physical Watermarking

However, it is likely that the design constraints do not allow A to be unstable.

This might be due to tight constraints on operating costs, safety parameters,

etc. In such cases, the physical watermarking countermeasure can be applied.

The results of Mo and Sinopoli [9] are extended, by providing a way to design

the watermark for multi-input multi-output (MIMO) systems.

In a SISO system, there is only one way to insert the random signal,

and only one way to observe it. Thus, to achieve a certain detection rate, a

certain performance loss would have to be accepted. However, in the case of

MIMO systems, the authentication signal can be inserted on one input or on

many, with different strengths, independent or not.

The different possible forms of the signal can be better visualized using a
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vector interpretation of the different components — each control input can be

considered as a coordinate in a p-dimensional space. The multivariate normal

distribution that is characterized by the covariance matrix Q has equidensity

contours that form ellipsoids in the p-dimensional space. The directions of

the principal axes of the ellipsoids are given by the eigenvectors of Q, and

their squared relative lengths are given by the corresponding eigenvalues. It

is possible that Q has less that p non-zero eigenvalues, in which case the

ellipsoid would be infinitely thin in a particular direction. Figure 2.3 shows

a possible ellipsoid for a system with 3 control inputs (p = 3).

The authentication signal ∆uk can be optimized such that the detection

requirements are met while minimizing the effect on controller performance.

Since the authentication signal has to be zero-mean, the design hinges on

the covariance matrix Q. Let the optimal value of Q, based on the design

requirements, be denoted by Q∗.

The optimization problem can be set up in two ways. Firstly, the LQG

performance loss (∆J) can be constrained to be less than some design pa-

rameter Θ, and the increase (∆gk) in the expected value of the quadratic

residues in case of an attack maximized. In this case, the optimal Q∗ is the
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Figure 2.3: A geometric interpretation of the covariance matrix Q for p = 3.
The principle axes of the ellipsoid are determined by the eigenvectors of Q,
and their relative lengths, by the corresponding eigenvalues.

30



solution to the optimization problem:

maximize
Q

tr
(

CT
P

−1CU
)

(2.27)

subject to U − BQBT = A U A
T

Q ≽ 0

tr
[(

U +BTSB
)

Q
]

≤ Θ.

Theorem 4. There exists an optimal Q∗ for Equation (2.27) of the following

form:

Q
∗ = αωωT , (2.28)

where α > 0 is scalar and ω is a vector such that ωTω = 1.

Proof. Suppose that Q∗ is the optimal solution of Equation (2.27) and U ∗

is the solution of

U
∗ −BQ

∗BT = A U
∗
A

T . (2.29)

Since Q∗ is positive semidefinite, it is known that

Q
∗ = Ω

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λp

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸

Λ

ΩT , (2.30)

where λi ≥ 0s are the eigenvalues of Q∗ and Ω = (ω1,ω2, . . . ,ωp) is an
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orthonormal matrix, such that ωi ∈ Rp. As a result, Q∗ can be written as

the sum of p rank 1 matrices:

Q
∗ =

p
∑

i=1

λiωiω
T
i . (2.31)

Let Qi be defined as

Qi
∆
= αiωiω

T
i , (2.32)

where αi > 0 is chosen such that

tr
[(

U +BTSB
)

Qi

]

= Θ. (2.33)

Moreover, let Ui be defined as the solution of the following Lyapunov equa-

tion:

Ui −BQiB
T = A UiA

T . (2.34)

It is clear that the optimal Q∗ must satisfy

tr
[(

U +BTSB
)

Q
∗] = Θ. (2.35)

Therefore, since

Q
∗ =

p
∑

i=1

λi

αi

Qi, (2.36)
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it can be seen that

Θ = tr
[(

U +BTSB
)

Q
∗]

=
p
∑

i=1

λi

αi

tr
[(

U +BTSB
)

Qi

]

=
p
∑

i=1

λi

αi

Θ, (2.37)

which proves that
p
∑

i=1

λi

αi

= 1. (2.38)

Furthermore, it is easy to see that since Lyapunov equation is linear,

U
∗ =

p
∑

i=1

λi

αi

Ui. (2.39)

Hence,

tr
(

CT
P

−1CU
∗) =

p
∑

i=1

λi

αi

tr
(

CT
P

−1CUi

)

. (2.40)

As a result, Q∗ is a convex combination of p feasible Qis. Since Q∗ is optimal,

we know that for any λi > 0, the corresponding Qi must also be optimal,

which finishes the proof.

Going back to the geometric visualization, this theorem states that the

ellipsoid associated with Q will always have only one non-zero principal axis.

In essence, instead of an ellipse, the optimal Q can be denoted by a p di-

mensional vector, the direction of which is characterized by the form of Q,
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and the length of which is dependent on the norm of Q.

The fact that Q∗ has rank 1 has a direct bearing on the computation

requirement. The number of independent random noise generators required

is equal to the rank of Q∗. Näıvely, one would have to use one independent

random noise generator per system input, in order to protect all of them.

However, irrespective of the number of system inputs, the rank of Q∗ is

always 1, which means that a single random noise generator will suffice for a

system with any number of inputs. This also implies that only one random

noise generator needs to be included in the “trusted base” of the controller

hardware and software.

Ideally, if there were a design constraint on the LQG cost, one would try

to optimize the detection rate. However, it can be shown that under attack gk

follows a generalized χ2 distribution, and no analytical form for the detection

rate can be accrued. Thus, only the maximization of the expectation in the

case of an attack is attempted, with the intuition that the detection rate in

such a case will be close to the maximum possible.

It can be seen from results in [9] that the increase (∆J) in LQG cost

and increase (∆gk) in the expectation of the quadratic residues are linear

functions of the noise covariance matrix Q. Thus the optimization problem

is a semi-definite programming problem and hence can be solved efficiently.

Furthermore, it can be seen that if the constraints are changed from Θ to

αΘ, the optimal Q∗ will be changed to αQ.

Another way of optimizing is to constrain the increase (∆gk) in the ex-
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pected values of the quadratic residues to be above a fixed value Γ, thereby

guaranteeing a certain rate of detection, and the performance loss (∆J) can

be minimized. The optimal Q∗ is now the solution to the optimization prob-

lem:

minimize
Q

tr
[(

U +BTSB
)

Q
]

(2.41)

subject to U − BQBT = A U A
T

Q ≽ 0

tr
(

CT
P

−1CU
)

≥ Γ.

2.6 Decoupling the Design Problem

The solutions of the two optimization problems given in Equations 2.27 and

2.41 will be scalar multiples of each other, thus solving either optimization

problem guarantees same performance. An intuitive way to see this is that

Q∗ measures the sensitivity of the system output to the different inputs, thus

making it a system property.

These properties can be applied to decouple the design of the signal into

two steps, Form and Norm.

1. Form of Q — The structure of the matrix Q is a system property, and

can be ascertained for any value of the thresholds (Θ or Γ).

2. Norm of Q —The norm of Q can be designed in the second step, taking

into performance the required detector performance (by using a linear
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multiplier to limit the quadratic residues to be above the threshold Γ),

or the required control performance (by using a linear multiplier to

limit the LQG performance loss to be less than the threshold Θ)

The first step of this approach requires setting up and solving an optimiza-

tion problem, which, although technically is a linear programming problem,

can be significantly large, involving as it does matrices of size n × n, where

n is the number of internal states of a system. The number of internal states

of a system can indeed be quite large, especially if the system involves some

kind of a physical delay, which is usually the case. A physical delay creates

a system that is no longer memory-less, and the number of memory states

required in the system is of the order of the number of discrete time steps

that make up the maximum temporal delay in the system. For example, in

the simulations of chapter 3, the system involves a delay of 6 minutes, which,

using a discretization time-step of 0.01 minutes, translates to around 600

memory states. The optimization problem, thus, involves matrices of size

more than 600× 600, which can take a significant time to solve.

However, once the optimization is set up and solved offline, a receiver

operating characteristic curve can be generated for possible norms of Q.

As shown in Figure 2.4, as ∥Q∥ increases, the ROC curve tends towards

the optimal point (α = 0, β = 1). An operating point for the detector can be

chosen by first choosing strength of the signal, and then a detection threshold.

In case of an increased threat level, the security of the system can be

increased by “turning a single dial”, i.e., changing the variance of the single
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random noise generator in the system.
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Figure 2.4: Possible Receiver Operating Characteristics for different norms
of covariance matrix Q

2.7 New Countermeasure — Cross-correlator Detec-

tor

The Kalman filter, LQG controller and the chi2-detector all utilize the zero-

mean Gaussian nature of the process and measurement noise. The chief

reasons for using these three is their inter-compatibility, and the ease of

theoretical analysis. The key idea behind physical watermakring, however,

can be applied irrespective of the choice of estimator, controller, and detector
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— the nature of dependence of the detection rate and strength of noise added

will remain the same, even though the actual expressions will change.

As an example, in this section we will consider a detector that takes the

cross-correlation of the expected measurements and the actual measurements

accrued from the sensors.

Implementing the χ2 detector requires the implementation of a Kalman

estimator. However, in some systems, a Kalman estimator might not be fea-

sible, due to noise characteristics or system observability. The noisy-control

countermeasure, however, can still be applied, to virtually any controller and

any detector, as long as a virtual system can be implemented. A signal

∆uk ∼ N (0, σ2) is added to the control signal. The effect of the control

input on the virtual system can be calculated, and the outputs compared.

Although the implementation is applicable for any estimator, controller,

and detector, for comparative purposes, the Kalman-LQG system from the

previous subsection used, with the cross-correlator detector to derive the

characteristics of this countermeasure. The system evolution equation is:

⎛

⎜
⎝

xk+1

x̂k+1

⎞

⎟
⎠ =

⎛

⎜
⎝

A BL

KCA A+BL−KCA

⎞

⎟
⎠

︸ ︷︷ ︸

Â

⎛

⎜
⎝

xk

x̂k

⎞

⎟
⎠

+

⎛

⎜
⎝

B

B

⎞

⎟
⎠

︸ ︷︷ ︸

B̂

∆uk +

⎛

⎜
⎝

I

KC

⎞

⎟
⎠wk +

⎛

⎜
⎝

0

K

⎞

⎟
⎠ vk+1, (2.42)
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and the measurement equation is:

yk =

(

C 0

)

︸ ︷︷ ︸

Ĉ

⎛

⎜
⎝

xk

x̂k

⎞

⎟
⎠ + vk. (2.43)

Note that Â is the same as defined in Equation (2.19). For the virtual system,

the system evolution equation is:

⎛

⎜
⎝

x′
k+1

x̂′
k+1

⎞

⎟
⎠ = Â

⎛

⎜
⎝

x′
k

x̂′
k

⎞

⎟
⎠+ B̂∆u′

k +

⎛

⎜
⎝

I

KC

⎞

⎟
⎠w′

k +

⎛

⎜
⎝

0

K

⎞

⎟
⎠ v′k+1, (2.44)

and the measurement equation is:

y′k = Ĉ

⎛

⎜
⎝

x′
k

x̂′
k

⎞

⎟
⎠+ v′k. (2.45)

It is assumed that x0 ∼ N (x̄0,Σ), x′
0 ∼ N (x̄0,Σ), ∆u ∼ N (0,Q),

wk ∼ N (0, Q), w′
k ∼ N (0, Q), vk ∼ N (0, R), and v′k ∼ N (0, R) are all

independent of each other. Let the detector run another virtual system,

which is connected directly to the controller and cannot be attacked by the

attacker.

⎛

⎜
⎝

x′′
k+1

x̂′′
k+1

⎞

⎟
⎠ = Â

⎛

⎜
⎝

x′′
k

x̂′′
k

⎞

⎟
⎠ + B̂∆uk +

⎛

⎜
⎝

I

KC

⎞

⎟
⎠w′′

k +

⎛

⎜
⎝

0

K

⎞

⎟
⎠ v′′k+1, (2.46)
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and the measurement equation is:

y′′k = Ĉ

⎛

⎜
⎝

x′′
k

x̂′′
k

⎞

⎟
⎠+ v′′k . (2.47)

Consider the detector variable gk = y′Ty′′ = tr
(

y′y′′T
)

. It can be proved

that, in the absence of a replay attack,

E
[

y′y′′T
]

= ĈRĈT , (2.48)

where R is the solution of the following Lyapunov equation:

ÂRÂT + B̂QB̂T = R. (2.49)

If the attacker replays the outputs y, or if he is running another virtual

system, the ∆u′ generated by the attacker will be independent of the ∆u

used in the controller’s virtual system. In case of either form of attack, R

becomes 0, causing E
[

y′y′′T
]

to drop to 0 as well. We can thus detect the

absence of the authentication signal in the output and hence, the attack.

Similar to the χ2 detector, in the case of MIMO systems, the covariance

matrix Q can be optimized, such that the detection requirements are met

while minimizing the effect on controller performance. Just like the previ-

ous case, the optimization problem can be set up in two ways. Firstly, the

LQG performance loss (∆J) can be constrained to be less than some design
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parameter Θ, and the increase (∆gk) in the expected value of the correlator

output in case of an attack maximized. In this case, the optimal Q∗ is the

solution to the optimization problem:

maximize
Q

tr
(

ĈRĈT
)

(2.50)

subject to ÂRÂT + B̂QB̂T = R

Q ≽ 0

tr
[(

U +BTSB
)

Q
]

≤ Θ.

Secondly, the increase (∆gk) in the expected values of the quadratic

residues can be constrained to be above a fixed value Γ, thereby guaranteeing

a certain rate of detection, and the performance loss (∆J) can be minimized.

The optimal Q∗ is now the solution to the optimization problem:

minimize
Q

tr
[(

U +BTSB
)

Q
]

(2.51)

subject to ÂRÂT + B̂QB̂T = R

Q ≽ 0

tr
(

ĈRĈT
)

≥ Γ.

Theorem 5. There exists and optimal Q∗ for Equation (2.50) of the follow-

ing form:

Q∗ = αωωT , (2.52)
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where α > 0 is a scalar and ω is a vector with ωTω = 1.

Proof. The proof is very similar to that of Theorem 4, hence is omitted.

Remark 6. Like the χ2 detector, only the maximization of the expectation is

attempted. The optimization problems are linear, and generate optimal Q∗s

which are multiples of each other.
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Chapter 3

Replay Attack: Example

In this section, a system that requires defense against the proposed replay

attack is introduced. The countermeasures discussed in Section 2 are suc-

cessively applied to the system. The importance of optimizing the signal is

indicated by highlighting the differences in using unoptimized and optimized

authentication signals.

3.1 Problem Formulation — Chemical Plant

The above methodology is applied to a simplified version of the Tennessee

Eastman Control Challenge Problem ([39]). The original problem requires

coordination of three unit operations, with 41 measured output variables

(with added measurement noise) and 12 manipulated variables. The control

challenge presented by this case study is quite complex. However, a simplified

version was proposed by N. Lawrence Ricker in 1993 ([40]), which is the model

we adopt. In this paper, Ricker derives a linear time-invariant dynamic model
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of the plant in its base-state, and a corresponding robust controller, with four

outputs and four inputs1:

y =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

F4

P

yA3

VL

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= Gu =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

g11 0 0 g14

g21 0 g23 0

0 g32 0 0

0 0 0 g44

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u1

u2

u3

u4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.1)

The individual transfer functions are given in Equations 3.2–3.7 (the unit of

s is assumed to be hr−1):

g11 =
1.7

0.75s+ 1
, (3.2)

g21 =
45 (5.667s+ 1)

2.5s2 + 10.25s+ 1
, (3.3)

g23 =
−15s− 11.25

2.5s2 + 10.25s+ 1
, (3.4)

g32 =
1.5

10s+ 1
e−0.1s, (3.5)

g14 =
−3.4s

0.1s2 + 1.1s+ 1
, (3.6)

g44 =
1

s+ 1
. (3.7)

The system is sampled at 100 samples per minute. The values of Q, R,

W , and U used for the controller are Q = 0.01I, R,W,U = I.

1The transfer function g23 is not given in [40]. It was estimated using the method
described in the paper.
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3.2 Attack Methodology

The attacker is considered to know the readings of all the sensors, with the

ability to hijack and modify them, but not the dynamics of the system. The

requirement of control over all sensors can be weakened if the system can be

decomposed into several weakly coupled subsystems, compromising sensors

for one subsystem may be sufficient. The only known fact is that the system

is expected to be in steady state for the duration of the attack. Of the 30

minutes for which the system is simulated, the attacker records the sensor

readings for the first fifteen minutes, and replays them to the controller for the

next fifteen. The attack consists for varying the control inputs of the plant,

to try and evolve it into a potentially dangerous state. Since no information

from the system is conveyed to the controller, the system becomes open loop,

without guarantees on control performance. The only way to get the system

back into the controlled state is to detect and mitigate the attack.

3.3 Results

The system is initially simulated without any countermeasure to prove the

feasibility of attack. In the next set of simulations, the physical watermarking

countermeasure is introduced, in both the optimal and non-optimal forms.

The methodology for designing the optimal form and norm is illustrated.

Finally, the cross-correlator countermeasure is applied.
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3.3.1 Feasibility of Attack

For the chemical plant, a W and U were chosen such that A is stable. A

χ2 detector with a window size of 10 samples (1 minute) is used. Figure

3.1a shows the value of gk for a χ2 detector, for the duration of 30 minutes,

when no attack is present. Figure 3.1b shows the value of gk when an attack

occurs after the first 15 minutes. It can be seen that there is no apprecia-

ble statistical difference in gk when an attack is present, making detection

impossible.

Thus, executing the attack without being detected is feasible.

3.3.2 Unstable A

It is assumed that the design parameters are flexible enough to allow A to

be unstable. K and L are generated randomly such that they form a good

estimator-controller pair, such that A is unstable. A χ2 detector with a

window size of 10 samples (1 minute) is used. Figure 3.2 shows the value of

gk in normal operation and when an attack occurs after the first 15 minutes.

It can be seen that the instability in A causes a change in gk when an attack

is present, which can be detected.

3.3.3 χ2 Detector, Non-Optimal

For this simulation, the estimator and controller are reverted to the original

case of section 3.3.1. The countermeasure of “noisy-control” is now used for

the system. A χ2 detector with a window size of 10 samples (1 minute) is

implemented. In this case, the authentication signal is not optimized. The
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Figure 3.1: gk as a function of time during normal operation, and a replay
attack. This shows that the detector (with threshold at 99% shown) fails to
detect the fall in gk due to an attack.
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(b) Replay Attack

Figure 3.2: gk as a function of time during normal operation, and a replay
attack, using a controller with unstable A . This shows that the detector
(with threshold at 99% shown) is able to detect the fall in gk due to an
attack.
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expected increase in LQG cost is 10% of the optimal LQG cost. In this case

Figure 3.3a shows the value of gk for a χ2 detector, for the duration of 30

minutes, when no attack is present. Figure 3.3b shows the value of gk when

an attack occurs after the first 15 minutes. It can be seen that there is some

difference in the statistical distribution of gk with and without an attack.
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(b) Replay Attack

Figure 3.3: gk as a function of time during normal operation, and a replay
attack. This shows that the detector (with threshold at 99% shown) is able
to detect the fall in gk due to an attack.
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3.3.4 χ2 Detector, Optimal

This simulation is similar to the one in section 3.3.3, except that the au-

thentication signal is optimized such that the expected increase in LQG cost

is 10% of the optimal LQG cost. In this case Figure 3.4a shows the value

of gk for a χ2 detector, for the duration of 30 minutes, when no attack is

present. Figure 3.4b shows the value of gk when an attack occurs after the

first 15 minutes. It can be seen there is significant difference in the statistical

distribution of gk with and without an attack. The results of this simulation,

when compared to those of section 3.3.3, show the importance of optimizing

the form of Q.

In the next set of simulations, Q is scaled by 0.2, 0.4, 0.6, 0.8 and 1, which

corresponds to setting Θ to 2%, 4%, 6%, 8%, and 10% respectively. A sample

set of 500 simulations was carried out to calculate the Receiver Operating

Characteristic (ROC) curve for each signal strength. These curves are shown

in Figure 3.5. In this case, probability of detection 1 minute after the onset of

the attack has been considered. It is easy to see that the performance of the

detector improves with increase in ∥Q∗∥, so an appropriate signal strength

can be designed considering the trade-off between the required ROC curve

and allowed performance loss.

3.3.5 Cross-Correlator Detector, Optimal

In this simulation, we use a cross-correlator detector with a window size of

30 samples (3 minutes) and the authentication signal is optimized such that
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Figure 3.4: gk as a function of time during normal operation, and a replay
attack. This shows that the detector (with threshold at 99% shown) is able
to detect the fall in gk due to an attack. Compared to Figure 3.3b, the change
in the statistics of the signal upon attack is much more significant, and is less
likely to be attributed to parameter change or inaccurate system knowledge.
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Figure 3.5: ROC curves for detector, when Θ is 2% (dark solid line), 4%
(thin solid line), 6% (dashed line), 8% (dotted line) and 10% (dash-dot line).
Detection up to 1 second after attack is considered.
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the expected increase in LQG cost is 20% of the optimal LQG cost. The

expected value the correlator output gk is 30.996. Figure 3.6a shows the

correlator output, for the duration of 30 minutes, when no attack is present.

Figure 3.6b shows the correlator output when an attack occurs after the first

15 minutes. It can be seen that gk drops significantly when an attack is in

progress.
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(b) Replay Attack

Figure 3.6: gk as a function of time during normal operation, and a replay
attack. This shows that the detector is able to detect the fall in gk due to an
attack.
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Chapter 4

Integrity Attacks: Example

This section introduces the problem of economic dispatch in electrical power

grids. The attack methodology is updated using state-of-the-art sensors as

well as state-of-the-art attacking tools. The extent of disruption such an

attack can cause while circumventing the current security measures is indi-

cated.

4.1 Phasor Measurement Units

Phasor Measurement Units (PMUs) are devices that measure the various

synchrophasors at each bus. Synchrophasors are voltage and current pha-

sors measured synchronously at widely dispersed locations on power grid,

which can be compared in real-time. These synchrophasors improve upon

traditional state estimation calculated using unsynchronized data points col-

lected every 2–4 seconds. Dubbed as “the MRI of our Power System”1,

Phasor Measurement Units, designed to measure these synchrophasors, were

1Power Grid Corporation of India, Limited
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invented in 1988 at Virginia Polytechnic Institute and State University, by

Dr. Arun G. Phadke and Dr. James S. Thorp. PMUs deliver 10–30 syn-

chronous reports per second, and the necessary ±500 ns accuracy is provided

by GPS time stamping.

PMUs are protected against loss of GPS signal, unintentional or other-

wise, by the use internal reference clock for several seconds. However, GPS

broadcasts can be spoofed without jamming. Practicality of GPS spoofing

was established by the work of Prof. Brumley et al, Carnegie Mellon Univer-

sity among others. Such an attack involves fabricating a counterfeit signal

from a GPS satellite, and placing an antenna to ensure fake signal drowns out

real one. A properly orchestrated attack on a PMU will change time-stamps

on PMU measurements, and hence the phase measurements.

4.2 Electricity Markets

In a wholesale electricity market such as found in many countries in the

world, competing generators bid on supplying electricity to retailers, who

then re-price it and sell it to consumers. For a wholesale electricity market

to be economically efficient, it needs a coordinated spot market that carries

out a “bid-based, security constrained, economic dispatch with nodal prices”.

The day-ahead market determines the system prices by equating supply

and demand — matching bids from generators and consumers at each node.

The theoretical price at each node is the marginal cost of an additional unit of

electricity to the system resulting from optimized redispatch of available elec-
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tricity. This “shadow price” of the hypothetical kilowatt-hour of electricity

is known as the locational marginal pricing and is used in some deregulated

markets including the Pennsylvania-New Jersey-Maryland Interconnection2

and New Zealand.

When network constraints, such as line limits being reached or exceeded,

or contingencies such as generator failure or transformer outage occurring,

costlier generation needs to be dispatched on the downstream side of the

congestion, causing the nodal prices on either end of the constraint to diverge.

The violation of constraints can only be determined by state estimation using

measurements from the SCADA system. Thus, the fidelity of the ex-post

settlement price for all market participants is based on the integrity of the

state estimation.

Xie et al ([10]) studied the economic impact of a potential class of in-

tegrity cyber attacks on electric power market operations. They showed that

with the knowledge of the transmission system topology, attackers might

circumvent the bad data detection algorithms equipped in today’s state esti-

mator. This, in turn, may be leveraged by attackers for consistent financial

arbitrage such as virtual bidding at selected pairs of nodes.

4.3 Problem Formulation — Economic Dispatch

The notations used for the problem formulation are summarized in Table 4.1.

2serving all or parts of Delaware, Illinois, Indiana, Kentucky, Maryland, Michigan, New
Jersey, North Carolina, Ohio, Pennsylvania, Tennessee, Virginia, West Virginia and the
District of Columbia
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i Index for generator i
j Index for load bus j
l Index for transmission line l
k Time k

I Total number of generators
J Total number of load buses
L Total number of transmission lines
Ldj Load at bus j during run time
Pgi Generation at i during run time
x A vector consisting of all Pgi and Ldj
z Collection of sensor measurements

Ci (Pgi) Generation cost for producing Pgi

Pg
min (max)
i Minimum (maximum) available power from generator i
λi Electricity price at bus i
Fl Transmission flow at line l

Fmax
l Maximum allowed transmission at line l

Fmin
l Minimum allowed transmission at line l

Table 4.1: Notations used for problem formulation ([10])
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The power market operates in three phases:

1. Ex-Ante: The ex-ante real-time market, which usually takes place ev-

ery 10 to 15 minutes prior to real time, conducts security-constrained

economic dispatch to determine the optimal power generation given the

expected load:

maximize
Pg∗i

I
∑

i=1

Ci (Pg∗i ) (4.1)

subject to
I
∑

i=1

Pg∗i =
J
∑

j=1

Ld∗j

Pgmin
i ≤ Pg∗i ≤ Pgmax

i ∀i = 1, 2, . . . , I

Fmin
l ≤ F ∗

l ≤ Fmax
l ∀l = 1, 2, . . . , L. (4.2)

Based on the linearized DC power flow model, the line flow vector is a

linear function of the nodal injection vector

F = H

⎛

⎜
⎝

Ld

Pg

⎞

⎟
⎠ . (4.3)

2. State Estimation: Due to the stochastic nature of the demand Ldj ,

the real-time values of Pg, Ld, and F may differ from the optimal

values calculated in the ex-ante market clearing. Hence, measurements

are necessary to estimate the real-time state variables. The real-time
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system states (x) differ from the steady state values x∗ :

x = x∗ + w, F = H (x∗ + w) , (4.4)

where w is a Gaussian random variable with zero mean and covariance

Q. Since the SCADA system measures the nodal injection vectors as

well as the line flows, the observation equation is:

z =

⎛

⎜
⎝

I

H

⎞

⎟
⎠

︸ ︷︷ ︸

C

x+ e, (4.5)

where e is the measurement error, also assumed to be Gaussian with

zero mean and covariance R. Since the observation equations and flow

model are assumed to be linear, the solution of the minimum mean

square error estimator is given by

x̂ =
(

CTR−1C
)−1

CTR−1

︸ ︷︷ ︸

P

z (4.6)

3. Bad Data Detection: The bad data detection system implemented in

state estimators compares the accrued measurements (z) with the ex-

pected measurements of a physical model. The residue r is defined

as

r
∆
= z − Cx̂. (4.7)
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The detector triggers an alarm based by comparing the norm of r with

certain threshold.

4. Ex-Post: Since the run time state variables Pg, Ld, and F are different

from the dispatch level in ex-ante market, RTOs will calculate the

vector of LMPs based on the run-time data for settlement purposes.

The ex-post pricing model is described in detail by Li et al ([41]). If

the positive and negative congestion sets are defined as:

cl+ =
{

l
∣
∣F̂l ≥ Fmax

l

}

, cl− =
{

l
∣
∣F̂l ≤ Fmin

l

}

, (4.8)

the ex-post formulation solves the SCED to obtain the LMPs for set-

tlement:

maximize
Pg∗i

I
∑

i=1

Ci

(

∆Pgi + P̂ g
∗
i

)

(4.9)

subject to
I
∑

i=1

∆Pgi = 0

∆Pgmin
i ≤ ∆Pgi ≤ ∆Pgmax

i ∀i = 1, 2, . . . , I

∆Fl ≤ 0 ∀ ∈ cl+

∆Fl ≥ 0 ∀ ∈ cl−. (4.10)

After solving the above optimization problem and computing the La-

grangian multipliers λ, ηl ζl, the nodal price at each load bus of the
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network, is defined as

λj = λ+HT
j (η − ζ) , (4.11)

where Hj is the jth column of the H matrix.

4.4 Timing Attacks

From an attacker’s point of view, a Phasor Measurement Unit has several

possible attack vectors — a network attack on the communication to the

data concentrator, an attack that injects current locally to distort the pha-

sor measurement, or an attack on the GPS unit. A current injection attack

can be considered to be beyond the realm of possible attacks, since the cur-

rent source needed to distort measurement would be too massive to utilize

discretely. A network attack can be prevented by using sufficiently good

encryption, and is out of the scope of this work.

A timing attack that breaks the synchronicity of the phasor measure-

ments could be a major problem for PMUs. As per the decoupled loadflow

equations, active power transfer between two nodes is strongly dependent on

the phase difference between the two nodes. An error of even 1 millisecond

in synchronization could potentially create a phase difference of about 20

degrees, leading to a large deviation in state estimation.

Such a timing attack can be executed by using GPS spoofing.

62



4.4.1 GPS Spoofing Attacks

A GPS spoofing attack is an attempt by a malicious party to deceive a GPS

receiver to cause it to estimate its position to be other than the correct one, or

to estimate the current time to be different than reality, or any combination of

the two, by broadcasting counterfeit GPS signals. A common form of attack,

termed as a carry-off attack, begins by broadcasting the equivalent of genuine

signals. The power of the counterfeit signals is then slowly increased to drown

out the real GPS signals — a not-impossible task, given the weakness of GPS

signals. Once the receiver is latched on to the counterfeit signal, the signals

are slowly changed to induce the receiver away from correct estimates of time

and/or position.

While it has been claimed that the capture of the Lockheed RQ-170 drone

aircraft in northeastern Iran in December 2011 was an instance of such a

carry-off attack [42], and such attacks have been proposed in the academic

community, no known example of a malicious spoofing attack has yet been

confirmed [43].

A proof-of-concept GPS spoofing attack was demonstrated by Todd Humphreys

et al in 2013, using equipment worth 3000 USD to spoof and hijack the multi-

million dollar yacht “White Rose” off the coast of Italy.3

3http://www.engr.utexas.edu/features/superyacht-gps-spoofing/
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4.4.2 Attack Methodology

In the electricity market system described above, there are no synchrophasor

measurements. To simulate a more restricted attack on a realistic grid, it

is assumed that approximately one-third of the buses have PMUs installed,

which measure the magnitudes and phases of the voltage and current injec-

tions at each bus, from each line. A timing attack on one such PMU will

therefore cause a deviation in phase in all the voltage measurements at the

bus and current measurements to and from the bus.

A malicious third party wants to attack the system and make a profit

from the market, by compromising a number of sensors and sending bogus

measurements to the RTO. The attacker is assumed to have the following

capabilities:

1. The attacker has full knowledge the underlying system topology.

2. The attacker knows the optimal states Pg∗, Ld∗, and F ∗ published by

the RTO from the ex-ante market.

3. The attacker compromises several subsets of sensors and can manipu-

late their readings arbitrarily. The attacker can choose which sensor

subset to compromise, however due to limited resources, he can only

compromise no more than l sensors. Let Γ = diag (γ1, γ2, . . . , γI+J+L),

where γi is a binary variable that is one if and only if sensor i is com-

promised by the attacker.
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4. The attacker knows the bad data detection algorithm and can defeat it

The bias introduced by the attacker is given by za ∈ span (Γ). Thus, the

state estimation Equation (4.6) can be rewritten as

x̂′ = Pz′ = x̂+ Pza. (4.12)

Thus, the residue of Equation (4.7) can be written as

r′ = r + (I − CP ) za. (4.13)

By Triangle inequality,

∥r′∥2 ≤ ∥r∥2 + ∥(I − CP ) za∥2 . (4.14)

If ∥(I − CP ) za∥2 is small, tending to 0, then the detector will not be able

to distinguish between the attacked and unattacked residues. This leads to

the definition introduced in [10]:

Definition 7. The attacker’s input za is called ϵ-feasible if ∥(I − CP ) za∥2 ≤

ϵ.

The attacker will choose to buy power at bus i and sell it at bus j, and

then carry out the attack. In this scenario, his profit per unit power (p) will

be the induced change in the nodal price at buses i and j due to the attack:

p = λi − λDA
i − λj + λDA

j , (4.15)
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where λDA denotes the day-ahead price at each bus. Using Equation (4.11),

it can be seen that the profit as a function of z′ will be dependent on the

shadow prices as a function of z′, eta (z′) and ζ (z′):

p (z′) = (Hi −Hj)
T (η (z′)− ζ (z′))− λDA

i + λDA
j . (4.16)

If L+ and L− are defined as:

L+ =
{

l
∣
∣Hl,i > Hl,j

}

, (4.17)

L+ =
{

l
∣
∣Hl,i < Hl,j

}

, (4.18)

p (z′) =
∑

l∈L+

(Hl,i −Hl,j)
T (ηl (z

′)− ζl (z
′))

∑

l∈L−

(Hl,j −Hl,i)
T (ηl (z

′)− ζl (z
′))

− λDA
i + λDA

j . (4.19)

Thus p (z′) > 0 if λDA
j > λDA

i , F̂ ′
l >

F
l min for l ∈ L+ and F̂ ′

l <
F
l max for

l ∈ L−.

This leads to the second definition introduced in [10]:
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Definition 8. The attacker’s input za is called δ-profitable if

E
[

F̂ ′
l

]

≥ Fmin

l + δ, ∀l ∈ L+

E
[

F̂ ′
l

]

≤ Fmax

l − δ, ∀l ∈ L−,

where E
[

F̂ ′
]

= F ∗ + Pza.

Hence, the attacker’s strategy during the run time is to find an ϵ-feasible

za such that the margin δ is maximized:

maximize
za∈span(Γ)

δ (4.20)

subject to ∥(I − CP ) za∥2 ≤ ϵ

E
[

F̂ ′
l

]

≥ Fmin
l + δ, ∀l ∈ L+

E
[

F̂ ′
l

]

≤ Fmax
l − δ, ∀l ∈ L−

δ > 0.

4.5 Simulation

The system used for simulation is the IEEE benchmark 14-bus system, shown

in Figure 4.1.

Buses 2, 6, 7, and 9 are assumed to have PMUs installed. The attacker

is assumed to have chosen to buy electricity at bus 2 and sell it at bus

4, and solves his convex optimization problem 4.20 to design timing attack
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Figure 4.1: IEEE 14-Bus System
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for the PMU. The attacker restricts his attack to a single PMU, with γis

corresponding to the affected voltage and current measurements being 1.

The simulation run by Xie et al ([10]) was re-run with these modifications.

Figure 4.2 shows the prices at each bus with (red +s) and without (blue ×s)

attack. By only attacking one PMU out of 4, i.e., only one bus out of 14, the

attacker managed to cause a pricing differential as shown in Figure 4.3.
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Figure 4.2: Ex-Post Electricity Price at each bus, with (red +s) and without
(blue ×s) attack

If the attacker has prior knowledge of his ability to execute the attack, he

can outbid his competition in the ex-ante market, and carry out the attack
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Figure 4.3: Pricing Differential caused at each bus due to attack on one PMU
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in real time, thereby affecting the state estimation. In the ex-post market,

the attack will cause the buying price for him to fall at bus 2. While the

attack also causes the selling price at bus 4 to fall, the overall difference is

still profitable to the attacker.

It can be seen that even a very restricted attack scenario, where the at-

tacker can only change the phase measurements at one bus out of fourteen,

gives rise to a differential pricing at two nodes chosen by the attacker, with-

out being detected by the bad data detectors. In conjunction with virtual

bidding, these integrity attacks can lead to consistent financial profit for the

attacker. The potential economic gain for the attackers is thus significant

even with small number of sensors being compromised by the attackers.

The next chapter focuses on modeling these theoretical attacks.
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Chapter 5

Integrity Attacks: Theoretical Prob-

lem

This section focuses on applying simplifying steps to the problem of Section

4. The theoretical detection schemes proposed by Mo et al ([44]) are re-

viewed, and the limitations faced in the practical application of the schemes

are discussed. The detection schemes are then simplified to the most basic

problem using binary states and a single class of binary sensors. The problem

formulation is then extended to two classes of sensors, and the preliminary

results are discussed.

5.1 Previous Work

A conventional method of security is using symmetric and asymmetric en-

cryption and decryption to secure the communications. Cryptographic keys

are broken and stolen daily, but even if they were secure, an attacker could

directly attack the physical environment of the components, without even
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touching the communication network. There are other methods of approach-

ing CPS security, most of which rely either on the information content of the

system (confidentiality, integrity, availability), or on the robustness of con-

trollers and estimation, detection and identification algorithms. The problem

with concentrating on the information content is the lack of a system model,

which can blind the detector to a wide variety of attacks (for example, low-

ering electricity bills by bypassing the meter). On the other hand, robust

controllers and algorithms tend to assume random, uncoordinated failures,

which is hardly the case during an attack.

In this thesis, we look at the problem of secure detection for a system

with a binary state and binary sensors. Although a sensor giving out just

one bit of information seems too weak at the first glance, it is more than just

an interesting case to look at. For systems using a multitude of distributed

sensors for detecting a binary state, it is often superfluous to consider con-

tinuous readings from all sensors, and in fact, might prove to be infeasible

for both sparse and low-powered communication networks, as well as small

embedded processors. It is usual on such a platform for the sensors to be pro-

grammed to make a decision based on the information they have, and only

communicate this decision over the network, reducing the communication

overhead. The controller then makes a decision based on these preliminary

decisions.

A similar system has been previously studied by Agah et al ([45]), Alpcan

and Başar ([19]), Fuchs and Khargonekar ([46]) and later by Vamvoudakis
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et al ([47]), by formulating the problem as a zero-sum partial information

game in which a detector attempts to minimize the probability of error and

an attacker attempts to maximize this probability. The optimal policy rec-

ommended by the authors in the latter work is a mixed strategy, where the

detector chooses between two rules, based on the perceived probability of

attack. This policy is dependent on the estimation of this probability of at-

tack, which, for a lot of systems, is not only extremely difficult to analyze

and estimate, but might also change widely based on several external factors.

Kodialam and Lakshman ([48]) also modeled intrusion detection as a

zero-sum game, albeit between the service provider and the intruder. Other

game-theoretical approach to solving the problem have been proposed by

Bier et al ([49]), who used the method increasing the attractiveness of some

vectors to the attacker, while designating others as unimportant. The chief

drawback of game-theoretical approaches is that the final detection output

is possibly a mixed strategy, and not a function of the just the inputs. That

is, for the same inputs, the detector output can change randomly based on

which policy is chosen, a behavior that may be undesirable in many systems.

Seeking a deterministic solution, we consider the behavior of such a sys-

tem in the presence of a powerful attacker, without looking to estimate a

probability that the adversary will attack. We consider an attack model

where the adversary can attack up to a certain number of sensors, while

remaining undetected. We provide an insight about what it means for an

estimator to be robust in such a scenario, using sensors of different specifica-
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tions. We analyze the robustness of such a detector for various capabilities of

the attacker. We then focus on the case where all the sensors are equivalent,

or at least, of similar specifications, and provide a procedure for choosing

the detector specifications. We also explore the case where the sensors fall

into 2 distinct classes, of different specifications — a case that is of special

interest for infrastructures that are undergoing modernization, replacing a

few sensors at a time with better versions.

Robust detection with minimax have been previously studied by Hu-

ber and Strassen ([50], [51]) and Kassam and Poor ([52]), using uncertainty

classes and the detector being designed as a näıve-Bayes or Neymann-Pearson

detector. The challenge in such an approach is constructing the least favor-

able distributions in the uncertainty classes, which are the classes that are

supposed to be the hardest for the detector to distinguish.

This section extends the results of [44] in the case of binary sensors and

binary cases. The problem of finding the sets defined in the paper has been

handled, and a procedure has been proposed to construct these sets in specific

cases.

5.2 Problem Formulation

Consider a binary random variable X , with distribution

X =

⎧

⎪
⎪⎨

⎪
⎪
⎩

0 with probability P0

1 with probability P1

, (5.1)
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where P0, P1 ≥ 0, and P0 + P1 = 1. Without loss of generality, let P1 ≥ P0.

To detect X , we have available a vector

y =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

y1

y2
...

ym

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ {0, 1}m (5.2)

of m binary sensor measurements, each of which is conditionally independent

from the others given X . Let each sensor have a probability of false alarm

(α)

P
(

yi = 1
∣
∣X = 0

)

= αi, (5.3)

P
(

yi = 0
∣
∣X = 0

)

= 1− αi, (5.4)

i = 1, 2, . . . , m,

and probability of detection (β)

P
(

yi = 1
∣
∣X = 1

)

= βi, (5.5)

P
(

yi = 0
∣
∣X = 1

)

= 1− βi, (5.6)

i = 1, 2, . . . , m.

If any of the sensors are actually such that αi ≥ βi for some values of i,

the measurements provided by those sensors can be inverted before being
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used, making αi ≤ βi. Thus, without a loss of generality, we can consider

αi ≤ βi ∀i.

In the case where there is no attack, a Bayes detection algorithm suffices.

P0

m
∏

i=1

αyi
i (1− αi)

(1−yi)
H1

≶
H0

P1

m
∏

i=1

βyi
i (1− βi)

(1−yi) (5.7)

where H0 ≡ X̂ = 0 and H1 ≡ X̂ = 1.

5.2.1 Attack Strategy

It is assumed that an attacker wants to increase the probability that the

detector makes an error in detecting X . The attacker has the ability to flip

up to l of the m sensor measurements, but the detector does not know which

of the m measurements have been manipulated. While the detector knows

that at most l measurements have been manipulated, the exact number is also

unknown to the detector. This means that any detection scheme X̂ = f (y)

has to rely on the original measurement vector (y) manipulated by the attack

vector (ya)

yc = y ⊕ ya, (5.8)

where ya ∈ {0, 1}m, and ∥ya∥ ≤ l. 1 Here ⊕ denotes the element-wise

exclusive-or operation. By selecting which bits of ya are 1, the attacker

1In this thesis, we are only dealing with binary states and sensor measurements, where
both the 0-norm and the 1-norm are equivalent. Hence, for legibility we choose to drop the
subscript, with the understanding that it can be either the 0-norm or the 1-norm. Indeed,
the norm ∥·∥ can very well be replaced by ∥·∥pp , 0 ≤ p < ∞ mutatis mutandis, without
affecting any of the results.
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chooses which sensors to attack.

5.2.2 Problem

The detection problem is formalized as a minimax problem where one wants

to select an optimal detector

X̂ = f (yc) = f (y ⊕ ya) , (5.9)

to minimize the probability of error (or maximize the worst-case probability

of detection as derived in section 5.3.1).

5.2.3 Attacker Knowledge

To have the detector follow the Kerckhoffs’ Principle which states that, a

cryptosystem should be secure even if everything about the system, (except,

of course, the key), is public knowledge, we assume that the attacker has

full knowledge about f , the state of the system X , and all measurements

y1, y2, . . . , ym.

5.3 Results

5.3.1 Robustness and Imperturbable Sets

The question arises about defining robustness of a detector under such an

attack. Since we are looking to maximize the probability of detection in the

worst possible case, we need to look for all such sensor measurements, such

that if those are the measurements provided by the sensors, the adversary
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can never affect enough of them to change the detector output.

Given a detection scheme f(y), let Y0 be defined as the set of true mea-

surements y, for which any attack vector, which follows the above attack

strategy, cannot force the estimate of X to be changed from 0 to 1. Simi-

larly, let Y1 be defined as the set of true measurements y, for which any attack

vector, which follows the above attack strategy, cannot force the estimate of

X to be changed from 1 to 0. Formally,

Y0 =
{

y
∣
∣f(y ⊕ ya) = 0, ∀ya ∈ {0, 1}m , ∥ya∥ ≤ l

}

, (5.10)

Y1 =
{

y
∣
∣f(y ⊕ ya) = 1, ∀ya ∈ {0, 1}m , ∥ya∥ ≤ l

}

. (5.11)

Thus, an attacker cannot affect the detection from any measurement that

falls in the set Y0 ∪ Y1, which is, in a sense, the “imperturbable set” for the

detector.

The number of sensor measurements that fall in Y0 ∪ Y1 is a measure of

the robustness of the detector.

Example

Consider f to be a simple voting scheme, where the detection output depends

simply on the majority of the sensor values (m can be considered to be odd

to break ties). Let m = 9, and l = 2. Thus,

f (y) =

⎧

⎪
⎪⎨

⎪
⎪
⎩

0 if ∥y∥ ≤ 4

1 if ∥y∥ > 4.

(5.12)
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It is easy to see that Y0 =
{

y
∣
∣ ∥y∥ ≤ 2

}

. If ∥y∥ ≤ 2, and ∥ya∥ ≤ 2, then

∥y ⊕ ya∥ ≤ 4, which will force f (y) = 0. Similarly, it is easy to see that

Y1 =
{

y
∣
∣ ∥y∥ ≥ 7

}

. If ∥y∥ ≥ 7, and ∥ya∥ ≤ 2, then ∥y ⊕ ya∥ ≥ 5, which will

force f (y) = 1. Thus Y0 and Y1, are “good sets” for the detector.

Remark 9. It is important to note that, Y0 ∪ Y1 ̸= {0, 1}m, except in the

case when l = 0 (there is no attacker). That is, there will be measurements

possible, which are neither in Y0 nor in Y1. For these measurements, the

attacker can indeed change the output of the detector. In the above example,

if the measurement y is such that 3 ≤ ∥y∥ ≤ 6, the attacker can change the

detector output to be what he chooses.

In the presence of an attacker, there will measurement values for which

the attacker is able to cause an error. In a worst-case scenario, a malicious

attacker will always cause errors. Thus, only the points in Y0 and Y1 con-

tribute to the worst-case probability of detection. Consider X = 0. The

probability of getting measurement y ∈ Y0 given X = 0 (which will assure

f (y ⊕ ya) = 0, ∀ya ∈ {0, 1}m , ∥ya∥ ≤ l) is

∑

y∈Y0

(
m
∏

i=1

αyi
i ·

m
∏

i=1

(1− αi)
(1−yi)

)

. (5.13)

Similarly, the probability of getting measurement y ∈ Y1 given X = 1 (which
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will assure f (y ⊕ ya) = 1, ∀ya ∈ {0, 1}m , ∥ya∥ ≤ l) is

∑

y∈Y0

(
m
∏

i=1

βyi
i ·

m
∏

i=1

(1− βi)
(1−yi)

)

. (5.14)

Thus the total worst-case probability of detection (P ) is given by

P = P0

∑

y∈Y0

(
m
∏

i=1

αyi
i ·

m
∏

i=1

(1− αi)
(1−yi)

)

+ P1

∑

y∈Y1

(
m
∏

i=1

βyi
i ·

m
∏

i=1

(1− βi)
(1−yi)

)

. (5.15)

Thus the problem of finding the optimal detector can be formally stated as

maximize
Y0,Y1

P0

∑

y∈Y0

(
m∏

i=1

αyi
i ·

m∏

i=1

(1− αi)
(1−yi)

)

+ P1

∑

y∈Y1

(
m
∏

i=1

βyi
i ·

m
∏

i=1

(1− βi)
(1−yi)

)

, (5.16)

subject to constraints of the problem, which will be formalized in further

sections.

5.3.2 No Fewer Than Half The Sensors Attacked (l ≥
⌈
m
2

⌉

)

Theorem 10. If l ≥
⌈
m
2

⌉

, at least one of Y0 and Y1 is empty.

82



Proof. l ≥
⌈
m
2

⌉

⇒ m− l ≤ l. Suppose both sets are non-empty. Let

y0 =

(

y01 y02 · · · y0m

)T

∈ Y0, (5.17)

y1 =

(

y11 y12 · · · y1m

)T

∈ Y1. (5.18)

Consider a measurement y,

y =

(

y01 y02 · · · y0l , y
1
l+1 y1l+2 · · · y1m

)

. (5.19)

Now, y = y0⊕ya, i.e., ya = y⊕y0. Since the first l values in ya are definitely

zero, ∥ya∥ ≤ m − l ≤ l. By the definition of Y0 (Equation (5.10)), and the

fact that ∥ya∥ ≤ l, it can be concluded that f (y) = 0. Let y = y1 ⊕ y′a, i.e.,

y′a = y ⊕ y1. Since the last m− l values in y′a are definitely zero, ∥y′a∥ ≤ l.

Again by the definition of Y1 (Equation (5.11)), and the fact that ∥y′a∥ ≤ l, it

can be concluded that f (y) = 1, which contradicts the previous conclusion.

Hence, one of the two sets must be empty.

Remark 11. If one of the two sets must empty, the other set can, and

in general, should, contain all the possible measurements. Essentially, this

scheme is equivalent to the detector disregarding the measurements and mak-

ing a decision based on the prior probabilities P0 and P1. Thus, if l ≥
⌈
m
2

⌉

and P0 > P1, the detector should always detect X̂ = 0, i.e., the set Y1 is

empty and Y0 contains all possible measurements. Similarly, if l ≥
⌈
m
2

⌉

and

P1 > P0, the detector should always detect X̂ = 1, i.e., the set Y0 is empty
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and Y1 contains all possible measurements.

The conclusion of Theorem 10 is that if more than half the number of

sensors are attacked, the detector should throw away all measurements and

always give an output based on the a priori probabilities, P0 and P1.

Thus from this point onwards, we can consider l ≤
⌊
m
2

⌋

.

5.3.3 Fewer Than Half The Sensors Attacked

Define a distance metric d as follows. Given a ∈ A and b ∈ B,

d (a, b) = ∥a− b∥ , (5.20)

d (a, B) = min
b∈B

∥a− b∥ , (5.21)

d (A,B) = min
a∈A

∥a−B∥

= min
a∈A,b∈B

∥a− b∥ . (5.22)

Lemma 12. For any Y0, Y1 such that d (Y0, Y1) ≥ 2l + 1 the detector f ,

d (y, Y0)
f(y)=1

≶
f(y)=0

d (y, Y1), Y0 and Y1 are imperturbable sets.

Proof. We only need to prove that f (y) = 0 ∀y ∈ Y0 and f (y) = 1 ∀y ∈ Y1.

Consider y ∈ Y0. Let yc = y ⊕ ya. Since the attacker can attack at most

l measurements, ∥ya∥ ≤ l. Thus, ∥yc − y∥ ≤ l. Since y ∈ Y0, the distance

metric to Y0 can only be equal to or smaller than the distance to y, i.e.,

d (yc, Y0) ≤ l. Since y ∈ Y0, d (y, Y1) ≥ 2l + 1. Since ∥yc − y∥ ≤ l, by the

triangle inequality, d (yc, Y1) ≥ l+1. Since, d (yc, Y0) ≤ l < 2l+1 ≤ d (yc, Y1),

f (y) = 0 for all y ∈ Y0.
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Similarly, consider y ∈ Y1. Let yc = y⊕ ya. Since the attacker can attack

at most l measurements, ∥ya∥ ≤ l. Thus, ∥yc − y∥ ≤ l. Since y ∈ Y1, the

distance metric to Y1 can only be equal to or smaller than the distance to y,

i.e., d (yc, Y1) ≤ l. Since y ∈ Y1, d (y, Y0) ≥ 2l+1. Since ∥yc − y∥ ≤ l, by the

triangle inequality, d (yc, Y0) ≥ l+1. Since, d (yc, Y1) ≤ l < 2l+1 ≤ d (yc, Y0),

f (y) = 1 for all y ∈ Y1.

Remark 13. An intuitive way to see this result is that since each attacked

sensors counteracts the measurement provided by an unattacked sensor, an

attack on l out of m sensors essentially means that the detection is carried out

using the measurements provided by m−2l sensors. Thus, ∀y0 ∈ Y0, y
1 ∈ Y1,

∥y0 − y1∥ ≥ 2l + 1. For example, if m = 9 and l = 2, 2 unattacked sensors

will counteract the effect of 2 attacked sensors, leaving the detector to estimate

X̂ from 5 sensors. Thus ∥y0 − y1∥ ≥ 5.

Thus the problem of finding the optimal detector can be formally stated

as

maximize
Y0,Y1

P0

∑

y∈Y0

(
m∏

i=1

αyi
i ·

m∏

i=1

(1− αi)
(1−yi)

)

+ P1

∑

y∈Y1

(
m
∏

i=1

βyi
i ·

m
∏

i=1

(1− βi)
(1−yi)

)

(5.23)

subject to d (Y0, Y1) ≥ 2l + 1. (5.24)

85



5.3.4 Special Case: l = m−1
2

The result of Lemma 12 is reduces to a simple form, for the particular case

where m is odd, and l = m−1
2 .

Corollary 14. If l = m−1
2 , |Y0| = |Y1| = 1. Further, if Y0 = {y0} and

Y1 = {y1}, y0 = ȳ1.

Proof. In this case, d (Y0, Y1) ≥ 2l + 1. But 2l + 1 = m and the dis-

tance between two m-dimensional binary vectors can be at most m. Thus,

d (Y0, Y1) = m. Thus, for any y0 ∈ Y0 and y1 ∈ Y1, y0 = ȳ1. Suppose that

there is another y′0 ∈ Y0 such that d (y′0, y1) = m. By the triangle inequality,

d (y′0, y0) ≤ 0, i.e., y′0 = y0. Thus, Y0 is a singleton set. Similarly it can be

proved that Y1 is also a singleton set.

Remark 15. If none of the sensors are “inverted”, then the measurement

that will form Y0 is yi = 0 ∀i (thus making Y1 =
{

y
∣
∣yi = 1 ∀i

}

). To

put it formally, if αi ≤ βi ∀i, then Y0 =

{
(

0 0 · · · 0

)T
}

and Y1 =

{(

1 1 · · · 1

)T
}

.

5.3.5 Complexity Of The Search-Space

The space of all possible measurements is {0, 1}m, i.e., there are 2m possible

values of y. Each value can be in Y0, Y1, or neither, thus giving rise to 32
m

possible ways of designing Y0 and Y1, and hence, the detector.

Having said that, once one of the sets, say Y0, is fixed, it is possible to

expand Y1 for all measurements such that d (Y0, Y1) ≥ 2l + 1 is not violated,
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by finding all points at a distance 2l + 1 or more from each point in Y0, and

then taking the intersection of these. Even considering this reduction, there

are 22
m
possible ways of fixing Y0 and Y1.

This double-exponential behavior of the enumerations makes a brute-force

search impractical beyond a very small value of m — computers will run out

of memory by m = 5. m = 6 is intractable.

In the further sections, we will concentrate on reducing the search-space

for some oft-encountered cases.

5.3.6 All Sensors are Equivalent

It is unlikely to ever be the case, that each sensor is unlike every other sensors

— in a practical application, most, if not all, sensors would have their false

alarm and detection rate equal. Even if the performance parameters are not

exactly equal, they would be close enough to each other, that the sensors can

be assumed to be equivalent:

αi = α, (5.25)

βi = β, (5.26)

i = 1, 2, . . . , m.
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Thus,

P = P0

∑

y∈Y0

α∥y∥ (1− α)(m−∥y∥) + P1

∑

y∈Y1

β∥y∥ (1− β)(m−∥y∥) . (5.27)

The advantage of this assumption lies in the fact that the search for

the optimal detector can be confined to only those detector functions that

are symmetric in sensor values. Further, for any detector that assumes all

sensors are equivalent, the detector function is a symmetric Boolean function,

and the output of the detector is a function of only the number of ones or

zeros in the measurement y ([53]). Thus, the detector function f (y), where

y =

(

y1 y2 · · · ym

)T

can be one of several types of counting functions:

T n
k (y) = 1 ⇐⇒ ∥y∥ ≥ k (threshold functions)

En
k (y) = 1 ⇐⇒ ∥y∥ = k (exactly-k-functions)

Cn
k,p (y) = 1 ⇐⇒ ∥y∥ = k mod p. (counting functions)

In this case, however, the optimal detector function, i.e., the function with

the maximum worst-case probability of detection (among symmetric Boolean

functions) can be proved to be a threshold function, i.e., it is monotonically

increasing.

Theorem 16. The optimal function g (∥y∥), defined to be a symmetric Boolean

function with the maximum worst-case probability of detection, is monotoni-

cally increasing.
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Figure 5.1: Detector Functions — X-axis is ∥y∥
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Proof. By the assumption that none of the sensors are inverted, g (0) = 0

and g (m) = 1. Suppose that the function g is not monotonic, and has a

“kink”. Thus, ∃i, j, k, such that 0 ≤ i < j < k ≤ m1 ≤ m and

g (n) =

⎧

⎪
⎪
⎪
⎪
⎪⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎪
⎪
⎩

0 if 0 ≤ n ≤ i− 1

1 if i ≤ n ≤ j − 1

0 if j ≤ n ≤ k − 1

1 if k ≤ n ≤ m1

(5.28)

An example function g with such a “kink” is shown in Figure 5.1a. Each

kink in the function can be denoted by unique values of (i, j, k,m1). In the

following argument, we consider only the kink closest to 0.

Since the detector function is given by

g (∥y∥) =

⎧

⎪
⎪⎨

⎪
⎪
⎩

0 if d (y, Y0) > d (y, Y1)

1 if d (y, Y0) ≤ d (y, Y1) ,

(5.29)

where,

d (Y0, Y1) ≥ 2l + 1, (5.30)

the subsets of Y0 and Y1 that lie in the range [0, m1] can be computed to be

Y0 =
{

y
∣
∣0 ≤ ∥y∥ ≤ (i− 1− l)

}

∪
{

y
∣
∣ (j + l) ≤ ∥y∥ ≤ (k − 1− l)

}

(5.31)

Y1 =
{

y
∣
∣ (k + l) ≤ ∥y∥ ≤ m1

}

∪
{

y
∣
∣ (i+ l) ≤ ∥y∥ ≤ (j − 1− l)

}

(5.32)
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Depending upon the value of m1 as compared to m, there can be other

subsets of Y0 and/or Y1 beyond the range that we consider. However, the

presence of such subsets will not affect the argument.

These sets are also shown in Figure 5.1a. Now consider two other func-

tions, g1, g2 ̸≡ g as follows:

g1 (n) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪⎪
⎩

0 if 0 ≤ n ≤ i− 1

1 if i ≤ n ≤ m1

g (n) if m1 ≤ n ≤ m

(5.33)

g2 (n) =

⎧

⎪
⎪
⎪
⎪⎪
⎪
⎨

⎪⎪
⎪
⎪
⎪
⎪
⎩

0 if 0 ≤ n ≤ k − 1

1 if k ≤ n ≤ m1

g (n) if m1 ≤ n ≤ m

(5.34)

The corresponding subsets of Y 1
0 , Y

1
1 , Y

2
0 , and Y 2

1 within the range [0, m1]

are given by

Y 1
0 =

{

y
∣
∣0 ≤ ∥y∥ ≤ (i− 1− l)

}

(5.35)

Y 1
1 =

{

y
∣
∣ (i+ l) ≤ ∥y∥ ≤ m1

}

(5.36)

Y 2
0 =

{

y
∣
∣0 ≤ ∥y∥ ≤ (k − 1− l)

}

(5.37)

Y 2
1 =

{

y
∣
∣ (k + l) ≤ ∥y∥ ≤ m1

}

(5.38)
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These two functions, along with the sets are shown in Figs. 5.1b and

5.1c. It can be seen that g1 and g2 are defined in a way to have only one of

the two 0 → 1 transitions of the first kink in g. Now, using the definition

of the worst-case probability of detection, the probability Pd for the detector

function g can be given by

Pd = P0

i−1−l
∑

n=0

αn (1− α)m−n + P0

k−1−l
∑

n=j+l

αn (1− α)m−n

+ P1

j−1−l
∑

n=i+l

βn (1− β)m−n + P1

m1∑

n=k+l

βn (1− β)m−n

+ P(m1,m),

where P(m1,m) denotes the contribution to the worst-case probability of de-

tection, of the part of the function that lies beyond the range [0, m1] that we

consider. Comparatively, the worst-case detection probabilities P 1
d and P 2

d

for the constructed functions g1 and g2 respectively, can be calculated to be

P 1
d = Pd −

(

P0

k−1−l
∑

n=j+l

αn (1− α)m−n − P1

k−1−l
∑

n=j+l

βn (1− β)m−n

)

︸ ︷︷ ︸

Pdiff

+ P1

j+l
∑

n=j−1−l

βn (1− β)m−n + P1

k+l
∑

n=k−1−l

βn (1− β)m−n

︸ ︷︷ ︸

Pβ

,
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and

P 2
d = Pd +

(

P0

k−1−l
∑

n=j+l

αn (1− α)m−n − P1

k−1−l
∑

n=j+l

βn (1− β)m−n

)

︸ ︷︷ ︸

Pdiff

+ P0

i+l∑

n=i−1−l

αn (1− α)m−n + P0

j+l
∑

n=j−1−l

αn (1− α)m−n

︸ ︷︷ ︸

Pα

.

That is,

P 1
d = Pd − Pdiff + Pβ

P 2
d = Pd + Pdiff + Pα.

We know that Pα, Pβ ≥ 0. Now, for g to be optimal, Pd ≥ P 1
d and Pd ≥ P 2

d .

But,

Pd ≥ P 1
d

⇐⇒ Pd ≥ Pd − Pdiff + Pβ

⇐⇒ Pdiff ≥ Pβ

⇒ Pdiff ≥ 0, (5.39)
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and

Pd ≥ P 2
d

⇐⇒ Pd ≥ Pd + Pdiff + Pα

⇐⇒ −Pdiff ≥ Pα

⇒ Pdiff ≤ 0. (5.40)

The only way these inequalities are satisfied, is if Pdiff = Pα = Pβ = 0. This

will be the case if α = β (in which case, all three probabilities are equal), or

i = j = k (there is no kink). The first case is discounted by the assumption

that α < β, and in the second case, all three functions g, g1, and g2 are

equivalent, which is discounted by the assumption g1, g2 ̸≡ g. This is a

contradiction.

Thus, the worst-case probability of detection of any function g can only

be increased by removing the first such kink in g. If the function g has

more than one kink, upon removal of the first kink in g, there will be a new

“first kink” in the new function. However, the above result can be applied

successively to each such kink, leading to the conclusion that the optimal g,

the one that has the maximum worst-case probability of detection, has no

such kinks, i.e., the optimal g has to be monotonically increasing.

Since the optimal detector function has only one 0 → 1 transition, it can

be defined only by one parameter, the threshold. The results of Lemma 12

can be combined with Theorem 16, to obtain the conditions for the threshold:
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Corollary 17. In a system where all m sensors have equivalent specifica-

tions, and the attacker can attack up to l sensors, the sets Y0 and Y1 which

maximize the worst-case probability of detection such that d (Y0, Y1) ≥ 2l+1,

are given by

Y0 =
{

y
∣
∣ ∥y∥ ≤ n

}

, (5.41)

Y1 =
{

y
∣
∣ ∥y∥ ≥ n + 2l + 1

}

, (5.42)

for some integer n such that 0 ≤ n ≤ m−1
2 . The detector function is therefore

given by

f (∥y∥) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

0 if ∥y∥ ≤ n + l

1 if ∥y∥ ≥ n + l + 1.

(5.43)

5.3.7 General Values Of l

We now consider other values of l <
⌊
m−1
2

⌋

. For given m and l, the worst-

case probability of detection P is a function of n parametrically dependent

on P0, P1, α and β. The shape of the function varies widely with a small

change in these values, and cannot be said to be either convex or concave.

For example, for m = 9 and l = 3 we get the plots of worst-case probability

of detection P vs. n for different values of α and β, shown in Figure 5.2.

As a result, it is impossible to predict a closed form expression for n. The

only solution is to do on exhaustive search for n = 0 through n = m−2l−1.

This is a linear search and thus tractable even for large values of m and l.
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Figure 5.2: Worst-case probability of detection P as a function of n, for
m = 9 and l = 3.
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Figure 5.2: Worst-case probability of detection P as a function of n, for
m = 9 and l = 3.
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Figure 5.2: Worst-case probability of detection P as a function of n, for
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5.3.8 Two Classes of Sensors

There is an often-encountered case in practical applications, where the sen-

sors can be grouped into two classes — “good” sensors, and “better” sensors.

This is usually the case when the sensors of a legacy network are being up-

graded in steps, or when the better sensors are much more expensive than

the good ones to be considered worth it. In such a case, a compromise can be

reached by only installing a few better sensors, while most of the network is

composed of the cheaper sensors. For example, Phasor Measurement Units

(PMUs) are so expensive compared to power meters, that only a few sub-

stations have them installed. Although the power grid can be considered to

be in the process of being upgraded, even the best-case distribution of the

PMUs is expected to be around 30% of the total sensors.

αi = αa, (5.44)

βi = βa, (5.45)

i = 1, 2, . . . , ma.

αi = αb, (5.46)

βi = βb, (5.47)

i = ma + 1, ma + 2, . . . , ma +mb = m.
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Let

y =

⎛

⎝

(

y1 y2 · · · yma

)

︸ ︷︷ ︸

ya

(

yma+1 yma+2 · · · ym=ma+mb

)

︸ ︷︷ ︸

yb

⎞

⎠ (5.48)

The search for the optimal detector can be confined to only those detec-

tor functions that are symmetric in ya and yb, making f (y1, y2, . . . , ym) =

g (∥ya∥ , ∥yb∥).

P = P0

∑

(

ya yb

)T

∈Y0

(

α∥ya∥
a (1− αa)

(ma−∥ya∥) · α∥yb∥
b (1− αb)

(mb−∥yb∥)
)

+ P1

∑

(

ya yb

)T

∈Y1

(

β∥ya∥
a (1− βa)

(ma−∥ya∥) · β∥yb∥
b (1− βb)

(mb−∥yb∥)
)

.

(5.49)

This case reduces to a search over a 2-D space. However, equivalent

conditions of monotonicity do not hold. As a counterexample, consider ma =

4, mb = 3, with P0 = P1 = 0.5 and αa = 0.1, βa = 0.9, αb = 0.2, βb = 0.8.

The optimal Y0 and Y1 are given in Figure 5.3.

Thus, the search needs to be carried over a space of 2(ma+1)(mb+1) possible

combinations of Y0 and Y1. This is a significant reduction in complexity

over the double-exponential nature of the original problem, and tractable for

values of m ≤ 12.
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Figure 5.3: Optimal Y0 (blue) and Y1 (red) for ma = 4, mb = 3, with
P0 = P1 = 0.5 and αa = 0.1, βa = 0.9, αb = 0.2, βb = 0.8. The paler colors
denote the corresponding decision when the point is neither in Y0 nor Y1.
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5.4 Correlated Sensors

In cyberphysical systems, the sensors in question monitor a physical sys-

tem — a system that is constrained to obey physical laws. In such a case,

the physical quantities measured by all sensors can scarcely be independent

of each other. The measurements of and the noise in each sensor will be

correlated to the sensors close to it. This section focuses on modeling the

correlation between the sensors and its ramifications on the worst-case prob-

ability of detection.

5.5 Correlated Binary Variables

Consider a set of m binary sensors y1, y2, . . . , ym the measurements of which

are not independent. Each sensor has probability of false alarm (α)

P
(

yi = 1
∣
∣X = 0

)

= αi, (5.50)

P
(

yi = 0
∣
∣X = 0

)

= 1− αi, (5.51)

i = 1, 2, . . . , m,

and probability of detection (β)

P
(

yi = 1
∣
∣X = 1

)

= βi, (5.52)

P
(

yi = 0
∣
∣X = 1

)

= 1− βi, (5.53)

i = 1, 2, . . . , m.
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It is safe to assume that the correlation coefficient between the sensors

is constant, irrespective of the state of the system (X). Even if this weren’t

true, the correlation of the sensor measurements can be considered separately

when X = 1 and X = 0. Since the derivations are similar, for cleanliness of

notation during the rest of the section, the value of the state X will not be

specified. The probabilities will instead be denoted as

P (yi = 1) = pi, (5.54)

P (yi = 0) = 1− pi, (5.55)

i = 1, 2, . . . , m.

with the understanding that, if X = 1, pi = βi and if X = 0, pi = αi for all

i = 1, 2, . . . , m.

Now, the probabilities pi need not be independent. That is, for some

1 ≤ i1 < i2 ≤ m, E [yi1yi2 ] ̸= E [yi1]E [yi2]. In fact, since more than two

variables can be interdependent, for some 1 ≤ i1 < i2 < . . . < ik ≤ m,

1 < k ≤ m,

E [yi1yi2 . . . yik ] ̸= E [yi1 ]E [yi2 ] . . . E [yik ] . (5.56)

If

wi =
yi − pi

√

pi (1− pi)
, (5.57)
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The correlation coefficient ri,j can be written as

ri,j =
E [yiyj]E [(1− yi) (1− yj)]− E [yi (1− yj)]E [(1− yi) yj]

√

E [yi]E [1− yi]E [yj]E [1− yj]
. (5.58)

Using E [yi] = pi and simplifying the expectations,

ri,j =
E [yiyj]− pipj

√

pi (1− pi) pj (1− pj)

= E [wiwj ] . (5.59)

Similarly, the higher correlation coefficients can also be calculated as

ri1,i2,...,ik = E [wi1wi2 . . . wik ] . (5.60)

As derived by Bahadur ([54]), the joint probability for a measurement vector

Y = (y1, y2, . . . , ym) can then be written as

P (y1, y2, . . . , ym) =
m
∏

i=1

pyii (1− pi)
1−yi h (y1, y2, . . . , ym) , (5.61)

where

h (y1, y2, . . . , ym) = 1 +
∑

j<k

rjkwjwk

+
∑

j<k<l

rjklwjwkwl + . . .

+ r12...mw1w2 . . . wm. (5.62)
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This is the probability, calculated by substituting α1 and βi for pi, that

causes the manifestation of the factor h (y1, y2, . . . , ym) in the worst-case

probability of detection P of Equation (5.15).

For m greater than 4 or 5, this distribution can become computationally

infeasible. One of the assumptions that are usually made (Emrich and Pied-

monte, [55]), is that some of the higher order correlation coefficients rjkl... are

zero. The problem with this assumption is that since rjkl... need to satisfy

linear inequalities determined by the marginal expectations, they are not free

to vary over [−1, 1]. Thus by assuming rjkl... are zero, the values of h at some

measurement vectors might be negative.

Even the values of rjk cannot be freely chosen from [−1, 1]. An intuitive

way to see this is to consider the correlations as cosines of angles in L2. For

example, consider three sensors y1, y2, and y3. If r12 > 0 and r23 > 0, it can

be seen that

r12r23 −
√

1− r212 ·
√

1− r223 ≤ r13 ≤ r12r23 +
√

1− r212 ·
√

1− r223. (5.63)

Thus, if r12, r23 > 1√
2
, then 0 < r23 ≤ 1 necessarily. If r23 were assumed

to be zero, it would violate the triangle inequality.

In the next section we propose a method to overcome this problem by

using a different assumption.
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5.6 Correlation Assumptions

Zero is as arbitrary a value for the correlation coefficient as any. In fact,

assuming rjkl... are zero could potentially make h (y1, y2, . . . , ym) negative for

some values of y1, y2, . . . , ym. In order to avoid this, we propose that the

correlation coefficient be set in the following roundabout manner, such that

h (y1, y2, . . . , ym) is guaranteed to be non-negative.

The key idea is to specify as many values of rjkl... as possible. Several

methods have been proposed to generate binary random variables that have

the given correlation values — for example, Emrich and Piedmonte ([55]),

and Lunn and Davies ([56]). A method that generates random variables of

given 2-correlations by using Poisson processes is proposed by Park et al

([57]). By choosing a suitable method of generating these correlated binary

random variables, the remaining correlations can be algebraically computed

and used instead of using zeros.

For example, consider m = 3 with p1 = 0.9, p2 = 0.8, p3 = 0.7, and the 2-

correlation coefficients are given as r12 = 0.1, r13 = 0.5 and r23 = 0.5. Given

the 2-correlations, the generation method in [57] can be chosen.2 Applying

2The values are chosen to match one of the examples given in [57].
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the method, we get

z1 =P1 + P2+P3 (5.64)

z2 =P1 + P4+P5 (5.65)

z3 =P1 + P2 + P4 + P6, (5.66)

where

P1 = Poisson (θ1 = 0.0165) , (5.67)

P2 = Poisson (θ2 = 0.0870) , (5.68)

P3 = Poisson (θ3 = 0.0018) , (5.69)

P4 = Poisson (θ4 = 0.1350) , (5.70)

P5 = Poisson (θ5 = 0.0716) , (5.71)

P6 = Poisson (θ6 = 0.1181) , (5.72)

where Poisson (θ) denotes a Poisson process of intensity θ.

The binary random variables y1, y2, and y3 can be generated from z1, z2,

and z3:

yi =

⎧

⎪
⎪
⎨

⎪⎪
⎩

1 if zi = 0

0 otherwise.

(5.73)

This is the prescribed method for generation of the yis. However, we don’t

actually need to generate the yis to calculate the unspecified coefficients of
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correlation (in this case, only r123). Using the definition of r123 from Equation

(5.60),

r123 =
E [y1y2y3]− p1p2p3

√

p1p2p3 (1− p1) (1− p2) (1− p3)

−

√
p1

1− p1
r23 −

√
p2

1− p2
r13 −

√
p3

1− p3
r12 (5.74)

The value of E [y1y2y3] can be computed given the forms of y1, y2, and

y3. Since y1y2y3 = 1 ⇐⇒ y1 = y2 = y3 = 1 ⇐⇒ z1 = z2 = z3 = 0 ⇐⇒

P1 = P2 = . . . = P6 = 0,

E [y1y2y3] =
l
∏

i=1

e−θi. (5.75)

Performing the computations, E [y1y2y3] = e−0.4300 = 0.6505, giving

r123 = 0.0109.

Thus, if these processes were to generate y1, y2, and y3, then the value of

r123 would not be zero. Although assigning the computed value of 0.0109 to

r123 of our sensors is exactly as arbitrary as assigning 0, the advantage here

lies in the fact that as long as the 2-correlations are consistent, the higher

correlations will also be consistent, enough to guarantee the non-negativity

of h (y1, y2, . . . , ym). All that remains is to use the higher correlation values

to figure out the worst-case detection probability.

As with the case of uncorrelated sensors, the following section demon-
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strates the case where all sensors are equivalent, and all 2-correlations are

the same.

5.7 All Sensors Equivalent

If all sensors are equivalent,

pi = p, 1 ≤ i ≤ m, (5.76)

ri,j = r, 1 ≤ i < j ≤ m. (5.77)

This uses a special case of the method given in [57]. Using the simplifi-

cation,

zi = P + Pi, (5.78)

where

P = Poisson (µ) , (5.79)

Pi = Poisson (ν − µ) , (5.80)

(5.81)

where µ = log
(

1 + r 1−p
p

)

and ν = − log p. Thus, for 1 ≤ i1, i2, . . . , ik ≤ m,

where 1 < k ≤ m, simplifying like the example in the last section,

E [yi1yi2 . . . yik ] =
p2k−1

(p+ r (1− p))k−1 . (5.82)
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Thus, E [yi1yi2yi3] =
p5

(p+r(1−p))2
can be used to generate the 3-correlations

r3 as

r3 =

p5

(p+r(1−p))2
− p3

p3 (1− p)3
− 3r

p

1− p
. (5.83)

These 3-correlations and E [yi1yi2yi3yi4] =
p7

(p+r(1−p))3
can be further used to

compute r4, and so on.

The correlation coefficients can be used to generate h (y1, y2, . . . , ym) using

Equation (5.62), which in turn generates the probabilities using Equation

(5.61), which finally manifests in Equation (5.15), to give us the worst case

probability of detection for correlated binary sensors. This can be then used

to figure out the optimal form of the detector.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, the problem of integrity attacks on cyberphysical systems was

tackled.

A replay attack model on cyber-physical systems was defined, and the

performance of the control system under the attack was analyzed. The con-

ditions under which the classical estimation-control-failure detection strategy

is not resilient to a replay attack were characterized, and for such systems

a technique using a physical watermarking signal was provided to improve

detection at the expense of control performance. The relationships between

performance loss, detection rate and the strength of the authentication sig-

nal, were characterized. A methodology for optimizing the signal was also

provided, based on the trade-off between desired detection performance and

allowable control performance loss. To illustrate the applicability of the key
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idea irrespective of the exact estimator, controller, and detector combina-

tion, a similar theoretical analysis was carried out on a system implementing

a cross-correlator detection scheme. Several different sets of simulations were

carried out to verify the theoretical results and illustrate the optimization of

the control signal for a chemical plant.

The susceptibility of state estimators in electrical grids to integrity attacks

was illustrated by simulating the effect of a GPS spoofing attack on Phasor

Measurement Units installed on the IEEE 14-bus system, which caused a

malicious change in the electricity market operations for such a grid, causing

potential unethical gains for a player in the bidding market. This attack

caused significant damage to the integrity of the power market operations

while only using a very restricted attack vector — one that only changes

a microsecond variation in the synchronicity of phasor measurements using

low-cost equipment to spoof signals from GPS satellites. The vulnerability

of SCADA systems to integrity attacks suggested the necessity of securing

the state estimators against such attacks. In an effort to reduce the combi-

natorial complexity of a previously-proposed method of designing detectors,

the simplifying assumption of binary sensors estimating binary states was

made. This assumption, although simplistic, applies to a large class of dis-

tributed sensor networks which employ low-cost and low-power sensors in

widely dispersed locations to estimate the system state. A methodology for

designing a detector in such a system was proposed. To further improve the

detector performance, the consideration of correlation between these sensors
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was proposed, and analyzed.

6.2 Future Work

This section details the future work possible in the area. The future tracks

for replay attacks and integrity attacks are detailed seperately in these sub-

sections.

6.2.1 Replay Attacks

In a real-world scenario, several engineering considerations could be employed

to improve the proposed designs. One idea is to use a “duty-cycle” for

the watermarking signal — the controller will only send the watermarking

signal for a percentage of the running time. This would reduce the average

performance loss by the same percentage. The attacker potentially has the

remaining percentage of the time of one duty-cycle to carry out his replay

attack without detection. This non-watermarked time can be designed by

making sure that in the worst-case scenario, the security constraints of the

plant are not violated, inspite of the attacker trying his best to drive the

system into a non-linear region or instability. This would involve calculating

the reachability set for the system for different time intervals.

Another possible direction would be to move away from using an authen-

tication signal that is completely random and IID, and instead describe the

authentication signal by designing its autocorrelation. While this can poten-

tially reduce the performance loss, if the attacker can find out the value of

the authentication signal at one point in time, he is in a position to figure
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out the future signal. The solution, then, might be to have an authentica-

tion signal that is partly IID and partly predictable, with the caveat that if

the attacker can find out the authentication signal at one point of time, the

probability of detection of the attack reduces thereafter.

Further decrease in performance loss can also be investigated by restrict-

ing the abilities of the attacker. For example, if the attacker can only eaves-

drop on a subset of the sensors instead of all of them. Future work will also

concentrate on extending these techniques to distributed control systems,

where several controllers could potentially exchange their secret watermark-

ing signals, in an effort to align them for minimum performance loss. Avenues

are also open to consider more sophisticated attack models, such as a com-

bination of a denial-of-service and replay attack, and so on.

6.2.2 Integrity Attacks

While the methodology of estimating the worst-case probability of detection

was demonstrated, in truth it involves laborious algebraic manipulations. For

higher number of sensors, a Computer Algebra System such as Mathematica

or Maple could be used to derive the form of the detector.

The increase in detection rate by considering the effects of correlation will

boost the security of distributed sensor networks that employ binary vari-

ables. Future work will involve simulating or implementing such a SCADA

system in order to demonstrate the effectiveness of the detector, and possi-

bly implementing these methodologies on a simulation or implementation of
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a power grid. There are several points in a smart grid, apart from the con-

gestion of lines, where a binary sensor is employed — binary variables can be

used to denote the states of circuit breakers, the tripping of lines or damage

to transformers, or even control actions like applying a capacitor bank for

voltage support. A binary detector that is resilient to integrity attacks can

be implemented on a simulation or an implementation of such sensors and

actuators.
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